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1 Bounds for Bracketing Methods

1.1 Curvature Bound Gives Function Bound

Given a twice-differentiable function f(x) such that:

• f has a global minimum at x∗

• For all x < x∗, f ′(x) < 0 and for x > x∗, f ′(x) > 0

• 0 < f ′′(x) <
1

K

and any interval (a, b) that brackets x∗ such that δ
def
= b− a ≤ K:

Theorem 1.1. For all x ∈ (a, b), f(x)− f(x∗) < K −
√
K2 − δ2.

Proof. Salient facts:

• Osculating circles.

• Squeeze theorem.

1.2 Function Bound Gives Algorithm Step Bound

Given:

• f(x) as before on a domain of length m, with 0 < f ′′(x) <
1

K

• ε vertical tolerance

Theorem 1.2. The golden section algorithm will achieve ε tolerance at iteration

n =
log
(
K2 − (K − ε)2

)
logϕ

− logm

logϕ

where ϕ =

√
5− 1

2

Proof. The golden section algorithm by construction reduces the interval width from m to

ϕm (ϕ
def
=

√
5− 1

2
) every iteration. From there, use the prior result and the fact that ϕn → 0

as n→∞.
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2 Stochastic Golden Section Search

2.1 Algorithm

With the function f as before and the domain [0,m]; define the function f̂(x) = f(x) + Zx
where Zx is a stochastic noise term at x. We assume that any distinct Zx noise terms are
independent and normal. The following procedure is an adaptation of golden section search
to find the minimum of f(x) given only the observations f̂(x).

Define the candidate interval [a, b]. Initialize the interval with a = 0 and b = m. Choose
a significance level 1− α, first-stage sample count n0 ≥ 2, and a precision target ε.

• Test Point Selection: Let x1 = a+ (1− ϕ)(b− a) and x2 = a+ ϕ(b− a).

– Initialize: Take n0 first-stage samples from f̂(x1) and f̂(x2). Construct the esti-
mates for the mean X̄1 and X̄2 and variance S1 and S2.

– Stopping: If
∣∣X̄1 − X̄2

∣∣ ≥ c

(
S1√
n1

+
S2√
n2

)
(where c is given from the choice of α

based on the normal distribution) then select either the interval [a, x2] or [x1, b]
based on which of X̄1 or X̄2 is smaller. Otherwise, proceed to refinement.

– Refinement: If S1

√
(n2 + 1)n2

(√
n1 + 1−√n1

)
≥ S2

√
(n1 + 1)n1

(√
n2 + 1−√n2

)
then sample once from f̂(x1) and update n1, X̄1, S1 accordingly; otherwise, sample
once from f̂(x2) and update similarly. After updating, check the stopping rule.

– Escape: If max

(
c
S1√
n1

, c
S2√
n2

)
< ε then the precision target has been reached-

select [a, x2] as the interval.

• Set the candidate interval [a, b] to the selected interval.

• Stopping: If b − a <
√
K2 − (K − ε)2, theorem 1.1 implies that the precision target

has been attained.

2.2 Analysis

Given a function with curvature bound 0 < f ′′(x) <
1

K
and domain [0,m], the algorithm

with precision target ε will require n(K,m, ε) iterations as given from theorem 1.2. From
this it is possible to examine from a finite sample perspective the probability of correct selec-
tion and the expected error. The process requires each confidence interval to correctly cover
the true mean of the function f̂(x); with n(K,m, ε) iterations this requires n(K,m, ε) + 1
confidence intervals to be correct, placing the lower bound on probability of correct selection
at (1− α)n(K,m,ε)+1.

The worst-case expected error can be approached by considering the worst-case scenario
where the true solution is at one extreme of the interval. From this, we can set up the
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following recursive formula for the error at stage k + 1, Ek+1:

Ek+1 =

{
Ek correct selection

Ek + (1− ϕ)ϕkm incorrect selection

Applying the law of total expectation, we have the following recursive formula for E(Ek):

E(Ek+1) = αE(Ek) + (1− α)
(
E(Ek) + (1− ϕ)ϕkm

)
E(Ek+1) = E(Ek) + α(1− ϕ)ϕkm

Solving this recurrence relation yields

E(Ek) = αϕ(1− ϕk)m

Thus, after n(K,m, ε) iterations, the expected error is αϕ(1− ϕn(K,m,ε))m.

3 Stochastic Bisection With Golden Section

3.1 Problem

Given a function g(x, d) where d is a discrete variable on [1, N ] and x is a continuous variable

on [0,m]. Suppose that for any fixed d, the function gd(x)
def
= g(x, d) satisfies the assumptions

as given before in 1.1, with the curvature bound 0 <
∂2

∂x2
gd(x) <

1

Kd

. Additionally, suppose

that for any fixed x the function g(x, d) is monotonically decreasing. Finally, we suppose only
noisy observations of g(x, d) may be made. To solve the following constrained optimization
problem (c is some fixed constraint), a mixture of bisection and golden section algorithms
are applied.

min d

∃x : g(x, d) ≤ C

3.2 Algorithm

Choose a tolerance level ε, and significance level α. Set the discrete candidate interval
[N1, N2] to [1, N ].

• Perform the stochastic golden section algorithm with ε and α on the function gd(x)

where d = N1 + bN2 −N1

2
c with the additional stopping criterion of stopping if the

confidence interval of either test point lies fully below the constraint level C.

• If the golden section algorithm has found a point x where the confidence interval for
gd(x) is below the constraint then set the discrete candidate interval to [N1, d] and
repeat; otherwise, set the discrete candidate interval to [d,N2] and repeat.
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• Once N2−N1 = 1, stop and claim N2 is the solution with the correct value of x having
been covered in the golden section process.

Optionally, an additional error checking procedure can be introduced to the bisection
search based on backtracking; once N2 −N1 = 1:

• Perform the golden section algorithm on both gN1(x) and gN2(x) until the minimum is
found.

• If the minima values are both below C, then set N2 = N1 and set N1 = N1 − 1 and
repeat.

• If the minima values are both above C, then set N1 = N2 and set N2 = N2 + 1 and
repeat.

• Once the minima for gN1(x) lies above C and the minima for gN2(x) lies below C, stop
and claim that N2 is the solution.

3.3 Analysis

3.3.1 Without Error Checking

Once again an analysis of the finite sample behavior is possible. With N total possible val-
ues for the discrete value, then the bisection algorithm will terminate within log2dNe steps;
hence, if the probability of correct selection for each golden section search process is (1−βd)
let (1− β)

def
= mind∈[1,N ](1− βd). The probability of correct selection for the binary search is

thus bounded below by (1− β)log2dNe.

The expected error for the binary search procedure can be bounded above by considering
the worst case. Suppose there are 2M = N total indices to check (for a non power of two,
throwing in as many “dummy” cases as necessary to attain a power of two will suffice).
Suppose there is a constant probability of incorrect selection β at every stage. In the worst
case, the true solution is at one extreme of the interval; suppose without loss of generality
that the true solution is at index 1. Now, it is already known that the bisection algorithm
will take M steps to complete.

Once again a recurrence relation and the law of total expectation lead to the result. In
this case, the recurrence relation for error at step k is:

Ek+1 =

Ek correct selection

Ek +
N

2k+1
incorrect selection

This results in the expected error at step k in closed form as

E(Ek) =
Nβ

2k
(2k − 1)
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3.3.2 With Error Checking

Pending...

Future thoughts:

• If the bisection step is positive, consider starting the next process with a shortened
continuous candidate interval (due to the monotonic nature); be wary of erroneous
selection causing problems, however.

• More intelligent probability of correct selection- not assuming a constant PCS across
all of it for ex
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