
1 Introduction

Let X(t) be a discrete-time homogeneous Markov decision process; let µ represent its unique
stationary measure. Consider the following optimization problem over a parameter domain
D:

arg min
(u,b)∈D

C(u, b) subject to G(u, b) ≤ α ∈ [0, 1]

Where G(u, b)
def
=

∫
Ω

G(x) dµ(x, u, b)

and C(u, b)
def
=

∫
Ω

C(x) dµ(x, u, b)

The contribution of this paper is to deal with this specific case of the general problem:

1. D is a bounded domain inside R+ × Z+.

2. G(·, b) is unimodal and continuously differentiable for any fixed b.

3. G(u, ·) is monotonic decreasing for any fixed u.

4. C(u, b) ≈ b.

First, the optimization procedure for the discrete case is described. Next, the problem
will be expanded to include a stochastic noise for the function G(u, b) and its derivative, and
an algorithm is determined for the stochastic case. The convergence of this algorithm will be
established by examining the ODE limit of the algorithm. The efficiency and efficacy of the
stochastic optimization will be determined by use of confidence intervals. Finally, a worked
case study to illustrate the application of these procedures is provided.

2 Deterministic Case

In the deterministic case, we assume that all of the function evaluations are completely ac-
cessible and have no noise. In other words, we assume both G(u, b) and its partial derivative
Gu(u, b) can be evaluated at any (u, b) ∈ D. Since G(u, b) is monotonic decreasing for a fixed
u, select bmin be a value of b sufficiently small and bmax be sufficiently large where G(u, bmin)
does not satisfy the constraint for all u and G(umax, bmax) does satisfy the constraint for some
value umax. In this case, a numerical algorithm can be employed which utilizes binary search
on the discrete domain and gradient descent on the continuous domain.

For a fixed value of b, for the right choice of stepsize sequence {εn,b}, the algorithm
converges to either a point (u, b) satisfying the constraint of the problem or the global
minimum (over u) of the function G(·, b) (which may or may not satisfy the constraint).

Proof. It is already established that for the gradient descent part of the algorithm, the
proper choice of stepsize sequence will lead to the algorithm converging to a local minimum
of G(u, b) for a fixed value of b. Since G(·, b) is unimodal for any fixed b, then this local
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Algorithm 1 Deterministic case algorithm (bisection and gradient descent)

Input: u = umax ≥ 0, bmin := 1, bmax > 1
while bmin 6= bmax − 1 do . Bisection method on b.

b = b(bmax + bmin)/2c
n← 0
while Gu(u, b) 6= 0 and G(u, b) > α and u > 0 do . Gradient descent on u.

u← u− εn,bGu(u, b)
n← n+ 1

end while
if Gu(u, b) ≤ α then . (u, b) is a solution.

bmax ← b
else . No solutions for this value of b.

bmin ← b
end if

end while
Output: bmax

minimum is the global minimum (over u); it will either be at the boundary (i.e. u = 0) or
it will be somewhere with Gu(u, b) = 0.

We also have that for any fixed value of b, minuG(u, b) ≥ minuG(u, b+ 1):

Proof. Let u∗ be the value u such that G(u∗, b) = minuG(u, b). Since G(u, ·) is monotonic
decreasing, it must be that minuG(u, b) = G(u∗, b) ≥ G(u∗, b+ 1). However, by definition it
must be that G(u∗, b+ 1) ≥ minuG(u, b+ 1); thus minuG(u, b) ≥ minuG(u, b+ 1).

Now it remains to show that the algorithm will always terminate at the solution for any
input:

Proof. For all values of b, the inner loop will find the global minimum of G(·, b) or a point
(u, b) such that G(u, b) ≤ α. Since minuG(u, b) ≥ minuG(u, b+ 1), it must be that there is
one unique value b∗ where minuG(u, b) > α for all b < b∗ and minuG(u, b) ≤ α for all b ≥ b∗.
A solution to the problem must therefore exist on the level set (·, b∗). Since the algorithm
starts with bmin where G(u, bmin) > α for all u and bmax where G(u, bmax) ≤ α for some u
then bisection will determine for which values of b the inner loop will run on. The bisection
technique will achieve the correct solution due to there being only one value b∗. Since the
inner loop will find the global minimum (or a point satisfying the constraint) for any starting
value of u and any value of b, then the whole algorithm will work until it finds the unique
value b∗; from there, gradient search will guarantee that a point will be found satisfying the
constraint (since minuG(u, b∗) ≤ α).

For reference, a generalized version of the algorithm that also takes advantage of the
monotonic behavior of G(u, ·) is to change b according to some step sequence {ξk}. In the
case of bisection search, this step sequence is exactly dbmax − bmine 2−(k+1). In this generalized
discrete search, we may choose a different sequence of {ξk}; this will prove useful in the
stochastic case, where G(u, b) is only estimated and thus there is no clean split of b values
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between ones that may satisfy the constraint and ones that cannot. With this step sequence
and the same assumptions from earlier, the generalized algorithm is as follows:

Algorithm 2 Deterministic case algorithm (discrete stepping and gradient descent)

Input: u1 = umax, u2 = umax ≥ 0, bmin := 1, bmax > 1
k ← 0
while bmin 6= bmax − 1 do . Discrete step on both ends of b.

b1 = bmin + ξk, b2 = bmax − ξk
n← 0
while Gu(u1, b1) 6= 0 and G(u1, b1) > α and u1 > 0 do . Determine if b1 is in a

solution by gradient descent.
u1 ← u1 − εn,b1Gu(u1, b1)
n← n+ 1

end while
if Gu(u1, b1) ≤ α then . (u1, b1) is a solution.

bmax ← b1

else . No solutions for this value of b1.
bmin ← b1

end if
n← 0
while Gu(u2, b2) 6= 0 and G(u2, b2) > α and u2 > 0 do . Determine if b2 is in a

solution by gradient descent.
u2 ← u2 − εn,b2Gu(u2, b2)
n← n+ 1

end while
if Gu(u2, b2) ≤ α then . (u2, b2) is a solution.

bmax ← b2

else . No solutions for this value of b2.
bmin ← b2

end if
k ← k + 1

end while

Theorem 1. Let F be the set of all unimodal functions on I; let x∗ represent the extrema
of f . Let SN be a search strategy using N observations; let ISN

be the interval containing x∗

that the search strategy can guarantee. For all ε > 0 and N ≥ 2 the Fibonacci search strategy
S∗N satisfies

sup
f∈F

∣∣IS∗N ∣∣ ≤ inf
all SN

sup
f∈F
|ISN
|

Moreover, sup
f∈F

∣∣IS∗N ∣∣ =
1

FN+1

.

Proof. Without loss of generality, we can consider only the class of unimodal functions with
a maximum on [0, 1]. The proof is by induction on N : for N = 2 the best any strategy can
do over the space of all possible unimodal functions is to reduce the search space by half.
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This is because the first observation cannot provide any information about the minimum of
a function by itself; thus the second observation can only provide in worst-case scenario a
binary determination.
The inductive hypothesis is that for N ≤ n the theorem holds. Put explicitly, the inductive
hypothesis is:

∀N ≤ n :
1

FN+1

= sup
f∈F

∣∣IS∗N ∣∣ ≤ inf
all SN

sup
f∈F
|ISN
| (1)

Now we show that it is true for N = n + 1 by contradiction: suppose there exists some
strategy S such that after n+ 1 observations

sup
f∈F

∣∣∣ISn+1

∣∣∣ < sup
f∈F

∣∣∣IS∗n+1

∣∣∣ ≤ 1

Fn+2

|I| (2)

The strategy Sn+1 will end in an interval of length a, [b, b+ a], with 1− (b+ a) = c; a > 0.
Similarly the Fibonacci search S∗n+1 ends in an interval of length e, with [d, d + e] with
1 − (d + e) = 1 − Fn+1/Fn+2 = Fn/Fn+2 = d. The following lemma must hold between the
intervals: the interval from Sn+1 must be contained within the interval from S∗n+1:

Lemma 1. b ≥ d, b+ a ≤ d+ e

Proof. This fact will be shown by contradiction as well. The proof for both end points will
be roughly similar: if Sn+1 is not contained inside the interval from S∗n+1, then there is an
even better procedure S ′ that will outperform S∗ using only n observations. The following
will be for the right endpoint; the proof for the left endpoint will be similar.

Suppose not:
a+ b > d+ e (3)

Thus a search procedure S ′ can be constructed with the interval of uncertainty IS′n for any
function f ∈ F from S ′ after n observations satisfying the property:

sup
f∈F

∣∣IS′n∣∣ < sup
f∈F

∣∣IS∗n∣∣
contradicting the inductive hypothesis.
The construction is as follows: for any f ∈ F , define g as follows:

g(x) =

 exp

(
f

(
x

a+ b

))
if 0 ≤ x < a+ b,

−x if a+ b ≤ x ≤ 1

First, it must be shown g ∈ F . g is well-defined over [0, 1], and the derivative of g can be
directly computed:

g′(x) =

 exp

(
f

(
x

a+ b

))
· f ′
(

x

a+ b

)
· 1

a+ b
if 0 ≤ x < a+ b,

−1 if a+ b ≤ x ≤ 1
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Thus g′(x) = 0 only when f ′
(

x

a+ b

)
= 0; since we have that f only has one extrema, xf ,

it must be the case that g only has one extrema, xg with xf =
xg

a+ b
. The behavior of the

sign of g′ can be determined in two parts:

• 0 ≤ x < xg: From the definition of g′, it is seen that g′(x) > 0 only when f ′
(

x

a+ b

)
>

0. Since f has the maximum at xf it must be that f ′
(

x

a+ b

)
> 0 for all 0 ≤ x

a+ b
<

xf =
xg

a+ b
; in other words, g′(x) > 0 for 0 ≤ x < xg.

• xg < x ≤ 1: Similarly, g′(x) < 0 only when f ′
(

x

a+ b

)
< 0. This means

xg

a+ b
= xf <

x

a+ b
≤ 1. In other words, g′(x) < 0 for xg < x ≤ 1.

So g ∈ F ; it bears repeating that xg = (a+ b)xf .
Now, let xk denote the evaluation points for f under the strategy S ′; let yk denote the evalu-
ation points for g under the strategy S. From the contradiction of the inductive hypothesis,
S already has the observations y0, y1, ..., yn+1, with interval of uncertainty [b, b + a] for the
function g. The strategy S ′ on function f is as follows:

1. The first evaluation point x0 of f under S ′ is at
b

a+ b
. Use this information to define

the first observation y0 of g under S at b. For S, let the second observation y1 be
at b + a; by definition of g, this is just the value −a − b. This does not require any
observation of f . Since xf ∈ [0, 1] it must be that xg = (a+ b)xf ∈ [0, a+ b].

For the remaining n− 1 observations on S ′, employ S on g to determine S ′ as follows:
at step k, use the observations of g on yk−1 and yk−2 in S to define yk. From yk, the
entries of the sequence xk can be constructed. Two possibilities exist for yk:

2. yk ≥ a+ b, then S ′ does nothing. Observe g at yk for the purpose of using S.

3. yk < a+ b, then S ′ performs an observation of f at
yk
a+ b

. Note that, by construction,

this is only an exponentiation step away from an observation of g at yk.

Once S has been used n + 1 times, it will produce an interval of uncertainty ISn+1
= [s, t].

The earlier identity xg = (a + b)xf means that 0 ≤ s ≤ (a + b)xf ≤ t ≤ 1; so xf must

satisfy
s

a+ b
≤ xf ≤ min

(
1,

t

a+ b

)
. Thus define the interval of uncertainty for S ′ as

IS′n =

[
s

a+ b
,min

(
1,

t

a+ b

)]
. S ′ will have at most n observations required for this interval.

The length of this interval is
∣∣IS′n∣∣ = min

(
t

a+ b
− s

a+ b
,

1

a+ b
− s

a+ b

)
. This quantity is
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bounded above by
t− s
a+ b

=

∣∣∣ISn+1

∣∣∣
a+ b

; thus:

(a+ b)
∣∣IS′n∣∣ ≤ ∣∣∣ISn+1

∣∣∣ (4)

Finally, by assuming b+ a > d+ e =
Fn+1

Fn+2

, a contradiction is achieved:

∣∣∣ISn+1

∣∣∣ ≤ 1

Fn+2

from (2).

(a+ b)
∣∣IS′n∣∣ ≤ ∣∣∣ISn+1

∣∣∣ from (4).

Fn+1

Fn+2

= d+ e < a+ b from (3).

(d+ e)
∣∣IS′n∣∣ < (a+ b)

∣∣IS′n∣∣ ≤ ∣∣∣ISn+1

∣∣∣ ≤ 1

Fn+2

=
d+ e

Fn+1∣∣IS′n∣∣ < 1

Fn+1

This is a contradiction with the inductive hypothesis, reprinted below:

∀N ≤ n :
1

FN+1

= sup
f∈F

∣∣IS∗N ∣∣ ≤ inf
all SN

sup
f∈F
|ISN
| from (1).

Thus, it must be the case that b + a ≥ d + e. As mentioned earlier, a similar proof can
be constructed for the b ≥ d case, using instead for g the following function:

g(x) =

{
x if 0 ≤ x ≤ b,

exp
(
f
(x
b

))
if b < x ≤ 1

Now, returning to Sn+1: with d ≤ b and a + b ≤ d + e, a similar procedure for proving the
lemma will allow the construction of a strategy S ′ that outperforms S∗ using n− 1 observa-
tions for both of them.

Again, for any function f ∈ F , define g as follows:

g(x) =

{
exp

(
f
(x
b

))
if 0 ≤ x < b,

−x if b ≤ x ≤ 1

As in the previous constructions, g ∈ F and xg = bxf . Similarly to before, the strategy S ′

for any function f will be constructed by way of S on g; let xk denote the evaluation points
for f under S ′ and let yk denote the n+ 1 evaluation points for g under S.

1. The first two evaluation points y0 and y1 of S on g will be at b and a + b. The
observation points xk can be determined from yk just as before:
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2. yk ≥ b: S ′ does nothing. Observe g at yk for using S.

3. yk < b: S ′ performs an observation of f at
yk
b

. By construction, this will also provide

an observation of g at yk.

By this procedure S ′ requires at most n − 1 evaluation points. Let ISn+1
= [s, t]; thus (in

a process similar to before) IS′n−1
=

[
s

b
,min

(
1,
t

b

)]
. This quantity is bounded above by

t− s
b

=

∣∣∣ISn+1

∣∣∣
b

. Thus, the contradiction is achieved:

b
∣∣∣IS′n−1

∣∣∣ ≤ ∣∣∣ISn+1

∣∣∣
Fn

Fn+2

= d ≤ b from Lemma 1.∣∣∣ISn+1

∣∣∣ ≤ 1

Fn+2

from (2).

d
∣∣∣IS′n−1

∣∣∣ ≤ b
∣∣∣IS′n−1

∣∣∣ ≤ ∣∣∣ISn+1

∣∣∣ < 1

Fn+2∣∣∣IS′n−1

∣∣∣ < 1

d

1

Fn+2

=
Fn+2

Fn

1

Fn+2

=
1

Fn

This contradicts the inductive hypothesis, reprinted below:

∀N ≤ n :
1

FN+1

= sup
f∈F

∣∣IS∗N ∣∣ ≤ inf
all SN

sup
f∈F
|ISN
| from (1).

Thus it must be the case that for any fixed number of observations n the Fibonacci search
strategy S∗ produces the smallest interval of uncertainty.

3 Stochastic Case

We now relax the deterministic case and introduce a martingale noise term to observations
of both G(u, b) and Gu(u, b). In this case, the only information at hand are the estimators

Ĝ(u, b) and Ĝu(u, b).
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Algorithm 3 Stochastic case algorithm (discrete stepping and gradient descent)

Input: σ, τ > 0, u1 = umax, u2 = umax ≥ 0, bmin := 1, bmax > 1
k ← 0
while bmin 6= bmax − 1 do . Discrete step on both ends of b.

b1 = bmin + ξk, b2 = bmax − ξk
n← 0
while |Gu(u1, b1)| > τ and |G(u1, b1)− α| > σ and u1 > 0 do . Check b1.

u1 ← u1 − εn,b1Gu(u1, b1)
n← n+ 1

end while
if |Gu(u1, b1)− α| ≤ σ then . (u1, b1) is a solution at this indifference level.

bmax ← b1

else . No solutions at this indifference level for this value of b1.
bmin ← b1

end if
n← 0
while |Gu(u2, b2)| > τ and |G(u2, b2)− α| > σ and u2 > 0 do . Check b2.

u2 ← u2 − εn,b2Gu(u2, b2)
n← n+ 1

end while
if |Gu(u2, b2)− α| ≤ σ then . (u2, b2) is a solution at this indifference level.

bmax ← b2

else . No solutions at this indiffierence level for this value of b2.
bmin ← b2

end if
k ← k + 1

end while
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