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Problem Formulation
Resource: integer variable b € N.
Operating control: continuous variable u € R4,
Constraint: §(b,u) < c.
Operating costs increase with resources.
Assumption

For each b the constraint function G(b,-) € C? and has a unique
minimum. Also, f(b) is monotone decreasing in b, where

f(b) = mlin S(b,u).
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Problem Formulation
Resource: integer variable b € N.
Operating control: continuous variable u € R4,
Constraint: §(b,u) < c.
Operating costs increase with resources.
Assumption

For each b the constraint function G(b,-) € C? and has a unique
minimum. Also, f(b) is monotone decreasing in b, where

f(b) = mlin S(b,u).

Simplified formulation: Seek the solution to the problem:

mbin f(b) subject to f(b) < ¢
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Problem Formulation

integer variable b € N.
continuous variable u € R4,
§(b,u) <c.
Operating costs increase with resources.

For each b the constraint function §(b,-) € C? and has a unique
minimum. Also, f(b) is monotone decreasing in b, where

f(b) = mljn S(b,u).

Simplified formulation: Seek the solution to the problem:

mbin f(b) subject to f(b) < ¢

But... we do not have direct measurements or closed form
expression of G. It depends on an underlying stochastic process.
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F(u,b)
Increasing b
Optimal region
Optimal b
Probability constraint for fixed fleet size
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Motivation: example
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Melbourne airport, 2005.
Fleet size b to be determined

Headway control: buses are at least u
minutes apart

Arrivals: passengers destined to
retrieve their cars

Passengers queue at carpark stations
(destination: Departures)

Buses loop around carpark stations
Unload first, load next

Random loading/unloading times
Buses empty at Departures
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Quality of Service criterion: the 95/10 rule
At least 95% of the passengers wait less than 10 minutes for a bus.

» Implicit optimal scheduling of buses (headway control u).
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Quality of Service criterion: the 95/10 rule

At least 95% of the passengers wait less than 10 minutes for a bus

» Implicit optimal scheduling of buses (headway control u).

» If b buses can satisfy the constraint, then so do b’ buses for
all b’ > b (monotone constraint)
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Motivation: example

At least 95% of the passengers wait less than 10 minutes for a bus.

» Implicit optimal scheduling of buses (headway control u).

» If b buses can satisfy the constraint, then so do b’ buses for
all b’ > b (monotone constraint)

» Constraint:

N(T
1()

S(b,u) =_lim E | = ; Liw,>10} | »
1=

A arrivals per unit time, N(-) arrival process. Wj is the
waiting time of passenger i at his/her station queue.



Problem Formulation
000080
;

Contribution

Methodology
Model Assumptions

Results

00000000000

Given resource/control parameters (b, u), the underlying process
{&n}is a Markov chainon S C R™
Transition probabilities

pb,u(X; dX) (E»n+1 S dX| &n = X)

Assume stationary measure Uy, ,,, and constraint of the form

G(b,u) = I|m

Zgin

By (9(En)).
Assumption. CLT on g in order to obtain steady-state mean and
asymptotic variance.

In practice: use long simulations to approximate G(b, u)

=
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Formulation

We present a simpler problem where u > 0 is one-dimensional.
#(b) = min_ §(b,u)
b* = argmin(f(b) : f(b) < c)

Constraint G(b, u) is estimated (long simulations).

Objective: Find an efficient method for fast approximation with

» A tolerance level ¢ for the estimation of f(b*).

» A statistical confidence level « for PCS(b*).
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Main Contributions

» Comparison of various methods to approximate b*.

> We analyze convergence for:
1. PCS for b*,
2. Computational complexity (number of iterations),
3. Estimate of final error in f(b*).
> The problem arises naturally in large
systems where the number of resources may be very large
(public transportation, number of servers in large networks,
personnel allocation for health management, etc).
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Simplified Formulation

Observation. For fixed b, the model is f(b) = min §(b,u).
u
» We are interested in finding b*: smallest resource allocation
that satisfies constraint.

» When b > b* it suffices to find u such that §(b,u) < ¢ to
determine that b satisfies constraint.

» Therefore, there is to find exact minimum.
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The outer loop is a binary problem:

Does b, satisfy constraint?
yes: choose b, 11 < by

no: choose b, 11 > by

Adapt binary search algorithm on b to stochastic case.
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Assume that it is always possible to overestimate w*(b). Given by
and u, (0) “large”, use target tracking:

un(k+1) = un (k) = n(5(bn, un (k) — )
Behavior:

n>0

» If b > b* u, (k) will decrease towards constraint satisfaction.
» If b <b* un(k) = 0and G(bn,un(k)) > c always.

Open problem: how to choose algorithm parameter: step size 1.
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Results

Assume initial interval [£(0), 1(0)]

= [0, for all b
¢ = (v/5—1)/2. Given by, and tolerance «, initialize

=1(0) — @(£(0) —7(0))
(0) = £(0) + o(r(0) —£(0))
If G(bn,x(k)) < G(bn,y(k)) t

r(k+1) =y(k); y(k+1) = x(k);

hen erase right subinterval:
(k); x(k+1) =r(k+1)—
Otherwise erase left subinterval
0(k+1)

©U(k+1)—r(k+1)).
=x(k);x(k+1) =y(k); y(k+1) = L(k+1D)+@(L(k+1)—1(k+1)).
Stop when either constraint is satisfied or when (k)

—{(k) <k

00000000000
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Method 3: gradient search

Assume that we can estimate §’(b,u) (can be FD’s). Given by,
and u,, (0) iterate with:

Un(k+1) =un(k) =M (bn,un(k)); m >0

Then under some technical assumptions Ii}r(n Un (k) approaches

u*(b) (in some adequate topology).

Open problem: How to choose algorithm parameter step size 1 and
stopping criterion?
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» Method 1: Target tracking

» Method 2: Golden section search
» Method 3: Gradient search

RN Ge
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Deterministic Golden Section Search

Theorem
Let gy (x) = G(b,x), x € [0, m].
Assume that gy, is twice-differentiable, with a constant K such that

0<ghlx) < % Golden section will achieve € tolerance
(K> e >0) at iteration

log(K? — (K — €)?) — logm

n(K,e) >
log ¢
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Stochastic Golden Section Search

Let f(b) = min gy (x). Suppose only noisy observations Gy (x) are
available for gy (x). Assume the following are true for gy, and Gy :
» gy, Is twice-differentiable, with a constant K such that
0<gplx) < %
> Ju(x) = gv(x) + Zp,x where each Zy, « is independent and
normally distributed, 0% > Var(Zp,x).
2
If the number of samplesn > (n(K,e) + 1) (%)
then P(|f(b) — f(b)| > €) < «

(1] log(1 — «)
where ¢ = @ (2 <1 + exp <n(K,e) +]>>>



Problem Formulation Contribution Methodology Results
000000 000000 00000000000

Stochastic Binary Search

Suppose that a strictly decreasing real-valued function f is defined
on the discrete domain [1,2, ..., N] and that there is a procedure
for observations of f to be generated with the following property
for any arbitrary value C and forany e >0 and 0 < x < 1:

P0m>cmn<c—gga( )

PGM<CWH>C+Q<&( )

For binary search to succeed with probability 1 — 3, f must be
determined such that the « in the above conditions satisfies

w1 (oo (ar))
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Error Estimates

Theorem

With the same assumptions as before, an upper bound for
expected error (in the search domain) for stochastic golden search
with probability of correct selection 1 — «, and n(K, e), m, ¢ as

before is:
n log(1 — «)
o0 =amm (1= (5 55))
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Gracient Estimaton

Golden Secton
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Experimental Results

Comparison of methods: average performance over 10,000 trials

Method | CPU | Samples | PCS | MSE

RM 183.2 | 593.8 .7661 | .6624

KW 177.2 | 604.4 7113 | .2967

GS 729.7 | 420.2 .9960 | .2729
=} 5
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Samples: Observed and Bounds

Samples Required for Golden Seclion

Samples

6o |

Epsilon
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Concluding Remarks

On-going and future extensions.
» Full comparison of methods: learn dependence on problem
characteristics.

» Generalization to multidimensional u € R4: Golden search on
random directions.

» Error detection and backtracking.

» Parallel computation for accelerated golden section search and
backtracking implementation.
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SSMO

CUNY Institute for
Computer Simulation, Stochastic
Modeling and Optimization
CUNY 9 P
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Epsilon vs. MSE

100 trials per epsilon value
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Alpha vs. PCS
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