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Problem Formulation
Resource: integer variable b ∈ N.
Operating control: continuous variable u ∈ Rd.
Constraint: G(b, u) 6 c.
Operating costs increase with resources.

Assumption

For each b the constraint function G(b, ·) ∈ C2 and has a unique
minimum. Also, f(b) is monotone decreasing in b, where

f(b) = min
u

G(b, u).

Simplified formulation: Seek the solution to the problem:

min
b
f(b) subject to f(b) 6 c

But... we do not have direct measurements or closed form
expression of G. It depends on an underlying stochastic process.
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Motivation: example

I Melbourne airport, 2005.

I Fleet size b to be determined

I Headway control: buses are at least u
minutes apart

I Arrivals: passengers destined to
retrieve their cars

I Passengers queue at carpark stations
(destination: Departures)

I Buses loop around carpark stations

I Unload first, load next

I Random loading/unloading times

I Buses empty at Departures
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Motivation: example

Quality of Service criterion: the 95/10 rule

At least 95% of the passengers wait less than 10 minutes for a bus.

I Implicit optimal scheduling of buses (headway control u).

I If b buses can satisfy the constraint, then so do b ′ buses for
all b ′ > b (monotone constraint)

I Constraint:

G(b, u) = lim
T→∞E

 1

λT

N(T)∑
i=1

1{Wi>10}

 ,
λ arrivals per unit time, N(·) arrival process. Wi is the
waiting time of passenger i at his/her station queue.
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Model Assumptions

Given resource/control parameters (b, u), the underlying process
{ξn} is a Markov chain on S ⊂ Rn.

Transition probabilities:

pb,u(x;dx) = P(ξn+1 ∈ dx | ξn = x)

Assume stationary measure µb,u, and constraint of the form

G(b, u) = lim
N→∞ 1

N

N∑
n=1

g(ξn) = Eµb,u(g(ξn)).

Assumption. CLT on g in order to obtain steady-state mean and
asymptotic variance.
In practice: use long simulations to approximate G(b, u).
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Formulation

We present a simpler problem where u > 0 is one-dimensional.

f(b) = min
u∈R+

G(b, u)

b∗ = arg min(f(b) : f(b) 6 c)

Constraint G(b, u) is estimated (long simulations).

Objective: Find an efficient method for fast approximation with

I A tolerance level ε for the estimation of f̂(b∗).

I A statistical confidence level α for PCS(b∗).
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Main Contributions

I Comparison of various methods to approximate b∗.
I Intellectual merit. We analyze convergence for:

1. PCS for b∗,
2. Computational complexity (number of iterations),
3. Estimate of final error in f(b∗).

I Potential impact. The problem arises naturally in large
systems where the number of resources may be very large
(public transportation, number of servers in large networks,
personnel allocation for health management, etc).
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Simplified Formulation

Observation. For fixed b, the model is f(b) = min
u

G(b, u).

I We are interested in finding b∗: smallest resource allocation
that satisfies constraint.

I When b > b∗ it suffices to find u such that G(b, u) < c to
determine that b satisfies constraint.

I Therefore, there is no need to find exact minimum.
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Binary Search

The outer loop is a binary problem:

Does bn satisfy constraint?
yes: choose bn+1 < bn
no: choose bn+1 > bn

Adapt binary search algorithm on b to stochastic case.
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Method 1: target tracking

Assume that it is always possible to overestimate u∗(b). Given bn
and un(0) “large”, use target tracking:

un(k+ 1) = un(k) − η(Ĝ(bn, un(k)) − c); η > 0

Behavior:

I If b > b∗ un(k) will decrease towards constraint satisfaction.

I If b < b∗ un(k)→ 0 and G(bn, un(k)) > c always.

Open problem: how to choose algorithm parameter: step size η.
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Method 2: truncated golden search

Assume initial interval [`(0), r(0)] = [0, ū] for all b.
ϕ = (

√
5− 1)/2. Given bn and tolerance κ, initialize

x(0) = r(0) −ϕ(`(0) − r(0))

y(0) = `(0) +ϕ(r(0) − `(0))

If G(bn, x(k)) < G(bn, y(k)) then erase right subinterval:
r(k+1) = y(k);y(k+1) = x(k); x(k+1) = r(k+1)−ϕ(`(k+1)−r(k+1)).

Otherwise erase left subinterval:
`(k+1) = x(k); x(k+1) = y(k);y(k+1) = `(k+1)+ϕ(`(k+1)−r(k+1)).

Stop when either constraint is satisfied or when r(k) − `(k) 6 κ.
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Method 3: gradient search

Assume that we can estimate G ′(b, u) (can be FD’s). Given bn
and un(0) iterate with:

un(k+ 1) = un(k) − η Ĝ ′(bn, un(k)); η > 0

Then under some technical assumptions lim
k
un(k) approaches

u∗(b) (in some adequate topology).

Open problem: How to choose algorithm parameter step size η and
stopping criterion?
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I Method 1: Target tracking

I Method 2: Golden section search

I Method 3: Gradient search
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Deterministic Golden Section Search

Theorem
Let gb(x) = G(b, x), x ∈ [0,m].
Assume that gb is twice-differentiable, with a constant K such that
0 < g′′b(x) <

1
K . Golden section will achieve ε tolerance

(K > ε > 0) at iteration

n(K, ε) >
log(K2 − (K− ε)2) − logm

logϕ
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Stochastic Golden Section Search

Theorem
Let f(b) = min

x
gb(x). Suppose only noisy observations ĝb(x) are

available for gb(x). Assume the following are true for gb and ĝb:

I gb is twice-differentiable, with a constant K such that
0 < g′′b(x) <

1
K .

I ĝb(x) = gb(x) + Zb,x where each Zb,x is independent and
normally distributed, σ2 > Var(Zb,x).

If the number of samples n > (n(K, ε) + 1)
(cσ
ε

)2
then P(|f̂(b) − f(b)| > ε) 6 α

where c = Φ−1

(
1

2

(
1+ exp

(
log(1− α)

n(K, ε) + 1

)))
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Stochastic Binary Search

Suppose that a strictly decreasing real-valued function f is defined
on the discrete domain [1, 2, ..., N] and that there is a procedure
for observations of f̂ to be generated with the following property
for any arbitrary value C and for any ε > 0 and 0 < α 6 1:

P
(
f(i) > C | f̂(i) < C− ε

)
6 α (False positive)

P
(
f(i) < C | f̂(i) > C+ ε

)
6 α (False negative)

Theorem
For binary search to succeed with probability 1− β, f̂ must be
determined such that the α in the above conditions satisfies

α 6 1−

(
exp

(
log(1− β)

log2dNe

))
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Error Estimates

Theorem
With the same assumptions as before, an upper bound for
expected error (in the search domain) for stochastic golden search
with probability of correct selection 1− α, and n(K, ε),m,ϕ as
before is:

ϕ(1−ϕn)m

(
1− exp

(
log(1− α)

n(K, ε) + 1

))
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Comparison of Algorithms
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Experimental Results

Comparison of methods: average performance over 10,000 trials

Method CPU Samples PCS MSE

RM 183.2 593.8 .7661 .6624

KW 177.2 604.4 .7113 .2967

GS 729.7 420.2 .9960 .2729
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Samples: Observed and Bounds
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Concluding Remarks

On-going and future extensions.

I Full comparison of methods: learn dependence on problem
characteristics.

I Generalization to multidimensional u ∈ Rd: Golden search on
random directions.

I Error detection and backtracking.

I Parallel computation for accelerated golden section search and
backtracking implementation.
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Thank You for your Attention

Questions?
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Epsilon vs. MSE
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Alpha vs. PCS


	Problem Formulation
	Problem
	Example
	Assumptions
	Problem Formulation

	Contribution
	Methodology
	Simplified formulation
	Binary Search

	Results
	Stochastic Golden Section Search
	Stochastic Binary Search
	Error Estimates
	Experimental Results


