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1 Introduction

Graph theory has established itself through its applicability in modeling phys-
ical, social, and information systems. One of the most common questions we
might have of a graph is determining a measurement of how influential or “cen-
tral” vertices in the graph are— for instance, the most connected person in a
social network, or the most crucial intersection in a traffic grid. We begin by
rigorously defining one of these centrality measures, eigenvector centrality, and
then proceed to construct an approximation of eigenvector centrality. Next, we
discuss random walks, and in particular maximal entropy random walks. Fi-
nally, we produce a local approximation for the maximum entropy random walk
process.

2 Preliminaries

A B

CD


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0


Figure 1: A graph and its adjacency matrix.

Throughout this document we will speak only of non-periodic, simple, finite,
connected graphs. The results can be extended to more generalized cases, but
they are beyond the scope of this document. For a graph G, and a particular la-
beling of G, we can construct the adjacency matrix A for G by setting [A]ij = 1
if there is an edge from vertex vi to vertex vj , and 0 otherwise. Since we are
considering connected, non-periodic graphs only, every adjacency matrix must
be irreducible (since to be reducible is equivalent to being able to distinguish
separate connected components).

The adjacency matrix A can be thought of as representing a linear operator,
which means that the following two operations are true for any two vectors ~x,
~y and any scalar α:

• A (~x+ ~y) = A~x+A~y

• A (α~x) = αA~x

For our purposes the vectors under consideration will just be ordered lists of
numbers, each one tied to a certain vertex in the graph. In the same way that
we constructed the adjacency matrix, the ith element of a vector will be the
number associated to the vertex vi. These two properties of a linear operator
will come in handy many times in calculations involving A.
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For an n × n matrix A, the scalar value λ and vector ψ that satisfy the
equation Aψ = λψ are the eigenvalue and eigenvector of A. There are n such
eigenvalue/eigenvector pairs, although they may not necessarily be distinct. If
A is a diagonal matrix, observe that the eigenvalues of A are precisely the
entries on the diagonal. Note that for any eigenvector and eigenvalue pair λ
and ψ, Akψ = Ak−1Aψ = Ak−1λψ = λAk−1ψ = ... = λkψ.

3 Spectral Graph Theory

The subject of spectral graph theory encompasses the study of the properties of
a graph with relation to the eigenvalues and eigenvectors of matrices associated
to that graph. For instance, while the adjacency matrix of a graph can be
different depending on how that graph is labeled, it turns out that the spectrum
(the collection of eigenvalues and eigenvectors) of its adjacency matrix stays the
same.

3.1 Eigenvalues of the Adjacency Matrix

Since we are working only on undirected, simple, finite graphs, it must be the
case that the adjacency matrix A for G is a finite, non-negative, real symmetric
matrix. Hence, by the spectral theorem on finite symmetric matrices, there
exists a real orthogonal matrix Q (orthogonal here meaning QT = Q−1) such
that D = QTAQ = Q−1AQ is a diagonal matrix of real values. As a result,
the eigenvalues of A are all real, and they are in fact the entries of D. For fu-
ture reference, we will label the eigenvalues λ1, λ2, ..., λn, where λn is the largest
eigenvalue. Moreover, for a diagonal matrix we know that the eigenvectors form
what is called an eigenbasis, which means that any vector can be rewritten as a
linear combination of eigenvectors.

If two graphs are isomorphic then they must have the same eigenvalues. This
statement can be turned around to provide us with a useful test to see if two
graphs are not isomorphic: if two graphs do not have the same eigenvalues, then
they must not be isomorphic. However, note that the converse is not necessarily
true: two non-isomorphic graphs can have the same eigenvalues.[1]

(a) Eigenvalues: {-2,0,0,0,2} (b) Eigenvalues: {-2,0,0,0,2}

Figure 2: Two non-isomorphic graphs with the same eigenvalues.
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3.1.1 Perron-Frobenius Theorem

We know that eigenvalues of a graph must be real valued. In fact, there is a
stronger result due to a special case of the Perron-Frobenius Theorem:

Theorem 3.1. (Perron-Frobenius Theorem, non-negative irreducible case)
If A is an irreducible, non-negative n×n matrix with spectral radius ρ(A) = r,
then the following statements hold:

1. r is a positive real number and it is an eigenvalue of A

2. r is a simple eigenvalue (i.e. its algebraic multiplicity is 1)

3. A has a right eigenvector ψr with eigenvalue r whose components are all
positive.

4. The only eigenvectors whose components are all positive are those asso-
ciated with the eigenvalue r.

Proof. See [2].

Remark Since r is positive and r = ρ(A) = maxi{|λi|}, it must be the case that
what we called λn above is actually r, the spectral radius. Moreover, observe
that since λn = r is the maximum in absolute value of all the eigenvalues, it
must be the case that |λn| ≥ |λi| for all the other eigenvalues.

3.1.2 Paths of Arbitrary Length

We can count the number of paths of length k between two vertices, vi and vj ,
using powers of the adjacency matrix.

Proposition 3.2. The number of paths length k from vi to vj is given by
[
Ak
]
ij

Proof. This is a consequence of the matrix multiplication algorithm: for exam-
ple, the number of paths of length 2 between vi and vj for a graph on n vertices
is given by the following:

n∑
x=1

[A]ix [A]xj

This is exactly the matrix multiplication algorithm for multiplying row i of
A with column j of A, and this makes sense: we are adding up all the possible
ways there are to go from vi to vj through a third vertex, vx. If there is no
connection either between vi and vx or vx and vj , then there is no possible
route through vx; but if there is a route from vi to vx to vj , then our sum will
effectively count it. This fact generalizes to Ak; [Ak]ij is the number of distinct
paths of length k from vertex vi to vertex vj .
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As a direct consequence of this fact, we can count the total number of possi-
ble paths of length k in G by adding up all the entries of A: this is represented
in matrix multiplication terms by 1TAk1.

In particular, the diagonal elements of Ak also refer to number of loops
of length k that exist in the graph. Since the adjacency matrix is always
diagonalizable, this implies that powers of A are also diagonalizable: D2 =
Q−1AQQ−1AQ = Q−1A2Q; and so on for any k. Since D is a diagonal ma-
trix, this means that the eigenvalues of Ak are the eigenvalues of A raised to
the kth power. This, combined with the fact that the trace of a matrix is the
sum of its eigenvalues, leads us down the following deduction [1]:

•
∑n
i=1 λi = tr(A) = 0, since G is simple (no self-loops)

•
∑n
i=1 λ

2
i = tr(A2) = 2E(G), where E(G) is the number of edges in G.

This is because any loop of length 2 is precisely the loop that starts from
a vertex, goes out along an edge, and comes back. The factor of 2 in the
answer is due to the fact that any edge is shared by two vertices: so each
edge is used twice in counting up all loops of length 2.

•
∑n
i=1 λ

3
i = tr(A3) = 6T (G), where T (G) is the number of triangles (loops

of length three) in G. The 6 is because each triangle gets counted six
times: for each of the three vertices in the triangle, there are two possi-
ble loops of length three to travel: one going “clockwise” and one going
“counterclockwise”, so to speak.

• In general, for k > 2,
∑n
i=1 λ

k
i = tr(Ak) = 2 · k · Ck(G), where Ck(G) is

the number of loops of length k in the graph.

More generally, it should come as no surprise that the eigenvalues of A are
also involved in computing the total number of paths of length k in A.

Proposition 3.3. The number of paths of length k is given by

n∑
i=1

a2iλ
k
i (1)

where {ai} are all constants and λi are the eigenvalues of A.

Proof. [1] Recall that all the eigenvalues ofAmust be real, sinceA is symmetric.
Let ψi denote the unit-length eigenvector associated with λi. Recall also that
the eigenvectors of A form an eigenbasis; hence there is some linear combination
such that

1 =

n∑
i=1

aiψi
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Inserting this into 1TAk1, we have the following expression for the total
number of paths of length k (bear in mind that ψTi ψj = 0 if i 6= j):(

n∑
i=1

aiψ
T
i

)
Ak

(
n∑
i=1

aiψi

)
=

(
n∑
i=1

aiψ
T
i

)(
n∑
i=1

aiλ
k
iψi

)

=

n∑
i=1

n∑
j=1

aiajλ
kψTi ψj =

n∑
i=1

a2iλ
k |ψi| =

n∑
i=1

a2iλ
k
i

Remark Since |λi| ≤ |λn| for all eigenvalues of A, it must be the case that
the expression

∑n
i=1 a

2
iλ
k
i is O(λkn); λn is the asymptotic growth rate for the

number of paths of arbitrary length.

3.2 Eigenvector Centrality

The Perron-Frobenius theorem gave us both the eigenvalue ρ(A) and an eigen-
vector with only positive components, ψ.

Definition The eigenvector centrality of a vertex vi is the ith entry in the
eigenvector ψ associated with ρ(A), denoted [ψ]i.

The eigenvector centrality is a kind of weighted average of influence, whereby
a vertex connected to a “more influential” vertex would likewise be more influ-
ential; but a vertex connected to many “low influence” vertices would not carry
as much influence.

.002 .008 .032 .122 .462

.439

.439

.439

.439

Figure 3: A graph with vertices labeled by their eigenvector centrality.

One way to derive this relationship is as follows: if we put on every vertex
of the graph a score si then we desire the following property: that the score of
an individual vertex is a (normalized) sum of the score of all of its neighbors.
Call the list of all these scores the vector ~s. Putting aside the question of how
to normalize the quantity, we have the following:

si =
1

S

n∑
j=1

[A]ij sj
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Now, if we multiply through by S we have Ssi =
∑n
j=1 [A]ij sj ; expressing

the collection {si} as the vector ~s, recall that the right hand side is exactly
the matrix multiplication algorithm for the ith component of A~s. Therefore,
S~s = A~s, which has as solutions precisely the eigenvalues and eigenvectors of
A. Now, if we consider only a score assignment where all the vertices receive a
positive score, we see that from the Perron-Frobenius theorem that there is in
fact only one eigenvector ψ with all positive entries, and that it is associated
precisely with the eigenvalue ρ(A); hence eigenvector centrality is exactly what
we are looking for in this scheme.

3.2.1 Applications

The primary utility of a centrality measure is to determine a measure for “in-
fluence” in a graph. In a social network, the centrality measure could represent
clout; for websites, it has been used in the example of PageRank as a measure
of relevancy. Additionally, it can be used alongside some applied mathematical
model, such as predicting disease spread and devising a quarantine procedure:
we could monitor the more influential nodes for sickness, and in the event they
do become sick we will be well ahead of knowing that the disease is about to
become a lot more widespread.

4 Power Iteration Algorithm

Computing the eigenvalues and eigenvectors of a matrix is, in general, difficult.
In the näıve approach it requires computing the determinant of an n×n matrix,
followed by solving an nth degree polynomial. There are special cases where
determining the eigenvalues is made easier, such as the case of a diagonal matrix,
but we cannot rely on our adjacency matrix A to have any special property.
However, since we are interested primarily in the eigenvalue with the largest
absolute value, we can take advantage of the power iteration algorithm, also
known as “Von Mises” iteration. Given a matrix A and an initial “guess” ~b0
for the eigenvector associated with the spectral radius, the algorithm is:

~bk+1 =
A~bk

‖A~bk‖
(2)

4.1 Algorithm Requirements

The algorithm will generate a sequence of vectors. It is possible for the algorithm
to generate a sequence of vectors that doesn’t converge, but has a subsequence
of vectors that does converge.
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Theorem 4.1. If A has an eigenvalue λn (with eigenvector ψn) strictly greater

in magnitude than all of its other eigenvalues, and ~b0 is a vector such that
~b0 ·ψn 6= 0, then the sequence of vectors {~bk} defined by:

~bk+1 =
A~bk

‖A~bk‖
=

Ak+1~b0

‖Ak+1~b0‖

has a convergent subsequence that converges to ψn.

Proof. For our purposes we will prove only the case involving irreducible non-
negative symmetric matrices A (thus satisfying the hypothesis of the Perron-
Frobenius theorem). As we have seen already, the eigenvectors of A form an
eigenbasis {ψi}; hence there is some linear combination such that:

~b0 =

n∑
i=1

aiψi

With the hypothesis that ~b0 ·ψn 6= 0 we have that the coefficient an 6= 0; from
the Perron-Frobenius theorem we also know that λn must be positive. Now,
applying Ak to ~b0, we have that:

Ak~b0 = Ak
n∑
i=1

aiψi =

n∑
i=1

aiA
kψi =

n∑
i=1

aiλ
k
iψi

Factoring out the term anλ
k
n:

n∑
i=1

aiλ
k
iψi = anλ

k
n

n∑
i=1

aiλ
k
i

anλkn
ψi = anλ

k
n

n∑
i=1

ai
an

(
λi
λn

)k
ψi

Put another way, we have that:

Ak~b0 = anλ
k
n

(
ψn +

an−1
an

(
λn−1
λn

)k
ψn−1 + · · ·+ a1

an

(
λ1
λn

)k
ψ1

)
If we call λn the eigenvalue from the Perron-Frobenius theorem, then the quan-

tity

∣∣∣∣ λiλn
∣∣∣∣ < 1 for any i 6= n. Hence

(
λi
λn

)k
tends to zero as k → ∞. Hence,

Ak~b0 → anλ
k
nψn as k →∞. Thus, the unit vector

Ak~b0

‖Ak~b0‖
tends to ψn (times

a possibly negative constant) as k →∞.

Remark In particular, the rate of convergence is

∣∣∣∣λn−1λn

∣∣∣∣.
Remark We can take advantage of the Perron-Frobenius theorem yet again
and recognize that since ψn has all positive entries, then the initial “guess”
vector of 1 satisfies the property that 1 ·ψn 6= 0.
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5 Maximal Entropy Random Walks

A random walk on a graph is a random traversal of the vertices of a graph.
Without being bogged down in the formal details, we can think of a random
walk as being determined by each of its steps. If we label the graph vertices
{vi} then a single step of the random walk starting at position vi is given by the
following: for all the neighbors of vi we call the probability that we step from
vi to vj the transition probability Pij . A random walk of length n starting from
position vi is given by all of the positions we hit after repeating this process n
times. Different types of random walk processes can be defined based on how
we describe the construction of the transition probabilities.

The first type of random walk is presented more as an example than anything
else: for every vertex vi of a graph, let the probability we travel from that ver-
tex to any of its neighbors be (deg vi)

−1
. This is sometimes called the “generic

random walk”: every step of the random walk effectively chooses equally be-
tween all of its possible next-steps. This random walk has been well-studied
and has some interesting properties; for example, Pólya’s Recurrence Theorem
states that the generic random walk on the 1-dimensional and 2-dimensional
infinite lattice is “recurrent” (i.e., it visits any point with probability one), but
for higher dimensions it is not recurrent.

5.1 Construction

The random walk process we would like to discuss is called the maximum entropy
random walk based primarily in analogy with information theory. For a fixed
starting vertex vi, for each of its neighbors vj , we are seeking transition prob-
abilities such that rather than choosing uniformly among neighbors (as is the
case in the generic random walk), we are choosing uniformly among all possible
paths from that vertex. This will typically not be the same as for the generic
random walk; it will require some knowledge about the global structure of the
graph. For example, consider the transition probabilities for a graph that just
consists of a path of length four. Looking at one of the vertices of degree two;
intuitively speaking, there are “more” paths going to vertices in one direction
than in the other. This can be made rigorous by expressing the probability as
the limit on path lengths; as we examine the paths of length k = 1, 2, 3, ..., we
can see that the maximal entropy transition probabilities are precisely the limit
as k goes to infinity.
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A B C D

(a) All paths of length 1 leaving vertex B.
1/2 go to A, 1/2 go to C.

A B C D

(b) All paths of length 2 leaving vertex B.
2/3 of them go to B, 1/3 of them go to D.

A B C D

1

.382

.618

.618

.382

1

(c) Maximal entropy probabilities.

Figure 4: Example: the path of length four.

For any vertex vi and its neighbor vj , we wish to determine the appropriate
number Pij such that all possible paths from vi are equally likely. Recall that
the entries in the matrix Ak indicate the number of paths from vertex vi to
vertex vj of length k. Therefore, the number of paths of length k from vi to
any vertex is the sum across the ith row of Ak; represented as

∑n
x=1

[
Ak
]
ix

in

summation terms and as
[
Ak1

]
i

in matrix multiplication terms.

Thus, in order to determine Pij , we must determine what the proportion is
of all paths (in the limit, as path length goes to infinity) that leave vertex vi
and route through vj compared to all paths that leave vertex vi in total. This
can be expressed in summation terms as [3]:

Pij = lim
k→∞

[A]ij

n∑
x=1

[
Ak−1]

jx

n∑
j′=1

[A]ij′

n∑
x=1

[
Ak−1]

j′x

(3)

The denominator is the expression for all paths from vi: they have to route
through some neighboring vertex vj′ .

Theorem 5.1.

Pij =
[A]ij [ψ]j
λ [ψ]i

(4)
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Proof. Taking the limit, we first observe that we can rewrite the terms involving
k in matrix multiplication terms:

n∑
x=1

[
Ak−1]

jx
=
[
Ak−1 · 1

]
j

n∑
x=1

[
Ak−1]

j′x
=
[
Ak−1 · 1

]
j′

Applying the same proof from the power iteration algorithm: represent 1 as a
linear combination of eigenvectors:

lim
k→∞

n∑
x=1

[
Ak−1]

jx

n∑
x=1

[
Ak−1]

j′x

= lim
k→∞

[
Ak−1 · 1

]
j

[Ak−1 · 1]j′
= lim
k→∞

anλ
k−1
n [ψ]j +O

((
λn−1

λn

)k)
anλ

k−1
n [ψ]j′ +O

((
λn−1

λn

)k) =
[ψ]j
[ψ]j′

Where ψ is the eigenvalue associated with ρ(A) from the Perron-Frobenius
theorem. So this allows us to express Pij as:

Pij =
[A]ij [ψ]j

n∑
j′=1

[A]ij′ [ψ]j′

Notice now that the denominator is the familiar summation form of the oper-
ation [Aψ]i; since ψ is the eigenvector we have that [Aψ]i = λ [ψ]i; thus our
final expression for Pij follows.

5.2 Local Approximation

As a practical matter, our expression for Pij depends on entries in the adja-
cency matrix A, and the eigenvalue/eigenvector pair associated with the spec-
tral radius of A. We have already established that approximation is possible
for computing the eigenvector and eigenvalue; however, even in that situation
it was required that we had access to all of A. Now we turn to the question of
computing Pij even if we did not have the “global” information given to us in
the form of the adjacency matrix A.

This is a very practical consideration, as we can take as a direct example the
concept of a social network graph: we may know all of our friends, but short of
interviewing every single person on planet Earth we do not have a good grasp
of the global adjacency matrix for the social network. One can imagine that
there is indeed a global graph structure for all people currently living, but it is
beyond intractable to try to determine and compute the entire global structure.
Instead, we must appeal to “local” approximations of the terms containing the
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spectral radius and its eigenvector ([A]ij is assumed to be readily determined
for some fixed i; we do not assume for all possible i, j that [A]ij is known).

The way we will compute this local approximation is by taking advantage of
the definition of the limit and of what Ak represents. Recall that Pij is defined
as the limit:

Pij = lim
k→∞

[A]ij

n∑
x=1

[
Ak−1]

jx

n∑
j′=1

[A]ij′

n∑
x=1

[
Ak−1]

j′x

Recall that
[
Ak
]
ij

represents the number of paths of length k from vi to vj .

Hence, we can describe the kth order approximation of Pij , P
k
ij , as follows [4]:

• P 0
ij =

[A]ij
n∑

j′=1

[A]ij′

=
[A]ij
deg vi

This approximation amounts to “uniformly select a neighbor”.

• P 1
ij =

[A]ij

n∑
x=1

[A]jx

n∑
j′=1

[A]ij′

n∑
x=1

[A]j′x

=
[A]ij deg vj

n∑
j′=1

[A]ij′ deg vj′

This approximation amounts to “uniformly select a path of length two”.

• P 2
ij =

[A]ij

n∑
x=1

(
[A]jx

n∑
y=1

[A]xy

)
n∑

j′=1

[A]ij′

n∑
x=1

(
[A]j′x

n∑
y=1

[A]xy

) =

[A]ij

n∑
x=1

[A]jx deg vx

n∑
j′=1

[A]ij′

n∑
x=1

[A]j′x deg vx

This approximation amounts to “uniformly select a path of length three”.

And so on, although for practical purposes the second order approximation is
already quite closely approximating the transition probabilities from the maxi-
mum entropy random walk [4].

13



5.3 Applications

(a) Generic. (b) Maximal entropy. (c) Approximation.

Figure 5: Frequency distribution for random walk encounters on a periodic
lattice with selected nodes (in red) deleted. Highest eigenvector centrality node
indicated in blue.

The primary feature of maximal entropy random walks that makes them use-
ful is that their transition probabilities will create a process that has a steady
state distribution that is clustered around the most “well-connected” area of
the graph. Intuitively this is reasonable; as there are more paths going through
a more well-connected part of the graph, there should be higher probabilities of
entering there in a maximal entropy process. However, this is useful for a variety
of reasons: for example, we could take this precisely to represent a quantitative
measure of “well-connected”, and use it to find cliques or communities in our
social networks.

The usefulness of a local approximation to the maximal entropy random
walk is that it enables us to devise procedures to “find” the areas of the graph
that are well-connected, by approximating the maximal entropy random walk
and following our approximations. Additionally, we can build estimates for the
entries of the eigenvector ψ associated with the spectral radius of A without
having to deal with the global matrix A.
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