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Introduction

Goal: Finding the “center” of a graph (ex. the most popular
person, or most influential group).
Example idea: Degree centrality.
Approach:

Use abstract properties of the adjacency matrix.

Figure out how to compute these properties.

Figure out how to proceed even without the adjacency matrix!
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Premises

Graph G is:

Simple: Undirected, unweighted, with no graph loops or
multiple edges between any two vertices.

Connected: There is a path from any vertex to any other in
the graph.

Aperiodic: There is no integer k > 1 such that for any cycle
in the graph k divides its length.

Finite.
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“Influence” centrality (ex. PageRank)

Degree centrality is too simple.
A vertex could be central without having the highest degree (you
may only have two friends, but if your two friends are Barack
Obama and Vladimir Putin...)
The centrality ci of vertex i should take into consideration the
centrality of its neighbors.
For some fixed K :

ci =
1

K

∑
all neighbors

cj

Larry Fenn Random Walks on Graphs



Introduction
Spectral Graph Theory

Random Walks
Conclusion

Linear Algebra Review
Perron-Frobenius Theorem
Eigenvector Centrality
Power Iteration Algorithm

Eigenvalues & Eigenvectors

Given an n × n matrix A:

Scalar value λ and vector ψ are called eigenvalues and
eigenvectors respectively of A if

Aψ = λψ

There will be from 1 to n distinct eigenvalue/eigenvector pairs.

They are properties of the matrix (equivalently, the linear map
the matrix represents).

The spectral radius of A is ρ(A) = max
i
|λi |.
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Requirements

The Perron-Frobenius theorem is a linear algebra theorem about
eigenvalues and eigenvectors.
The version of the Perron-Frobenius theorem we will use has the
following hypothesis for a matrix A:

A is a non-negative n × n matrix.

A must be irreducible.

A must be an aperiodic matrix.

In fact, the full theorem has far weaker hypothesis.
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Graph-theoretic hypothesis

If we are working with a graph adjacency matrix A, then the
requirements mean:

Non-negative: A represents a simple graph (since all entries of
A are either 0 or 1).

Irreducible: A represents a connected, undirected graph.

Aperiodic: A represents a graph G where the greatest
common divisor of all cycle lengths for cycles in G is 1.

Here, too, the graph conditions are stronger than what is needed
to satisfy the hypothesis.
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Statement of theorem

Perron-Frobenius theorem, special case
If the n × n matrix A is a non-negative, irreducible, and aperiodic,
then the following hold:

ρ(A) is a positive number, and it must be an eigenvalue of A.

ρ(A) is simple: it is distinct from the other eigenvalues.

The eigenvector ψ associated with ρ(A) has all positive
components.

The only eigenvector of A with all positive components is ψ.

Proof is nontrivial.
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Significance of ψ

ψ is the “influence” centrality measure we wanted earlier.

Aψ = ρ(A)ψ

1

ρ(A)
Aψ = ψ

Take one component:

1

ρ(A)

n∑
j=1

Aijψj = ψi
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Example: “Lollipop”

A B C D E

F

G

H

I

A =



0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 1 1 1
0 0 0 0 1 0 1 1 1
0 0 0 0 1 1 0 1 1
0 0 0 0 1 1 1 0 1
0 0 0 0 1 1 1 1 0


ψ =



.002

.008

.032

.122

.462

.439

.439

.439

.439


, ρ = 4.055
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Requirements

The power iteration algorithm is an algorithm that finds an
eigenvector and eigenvalue of a matrix A.
In particular, it finds the eigenvector associated with the eigenvalue
of largest absolute value.
The power iteration algorithm will converge (or have a subsequence
that converges) to an answer subject to the following hypothesis:

A has an eigenvalue strictly greater in absolute value than all
of its other eigenvalues.

The initial guess eigenvector ~b0 satisfies ~b0 ·ψ 6= 0.
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The algorithm

The algorithm:

~bk+1 =
A~bk

‖A~bk‖

Proof sketch: Express ~b0 over the eigenbasis for A (A is
symmetric!), then apply Ak and use linearity & eigenvector
properties.
Perron-Frobenius: ρ(A) is both an eigenvalue of A and it is strictly
greater than all of the other eigenvalues (ρ(A) is simple).
ψ has all positive components, so take as an initial guess any
positive vector.
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Generic Random Walk
Maximal Entropy Random Walk
Approximating MERW

Definition

We can define a random walk process by assigning probabilties for
travel from one vertex to another.
Basic random walk: uniformly select a neighbor.
Long-term behavior: diffuses to every part of the graph.
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Example:

The following graphs are both horizontally and vertically periodic.

(a) Underlying graph (b) Three walks (c) Overall frequency
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Definition

Rather than select uniformly among neighbors, we can select
uniformly among paths.
Determine how many paths leave each neighboring vertex, and
weigh the probability of travel to that vertex accordingly.
Long-term behavior: tends towards the more well-connected parts
of the graph.
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Example:

The following graphs are both horizontally and vertically periodic.

(a) Underlying graph (b) Three walks (c) Overall frequency

Larry Fenn Random Walks on Graphs



Introduction
Spectral Graph Theory

Random Walks
Conclusion

Generic Random Walk
Maximal Entropy Random Walk
Approximating MERW

Derivation

Transition probability Pij should be defined as:

Pij = lim
k→∞

Aij

n∑
x=1

Ak−1
jx

n∑
j ′=1

Aij ′

n∑
x=1

Ak−1
j ′x

Intuitively: the denominator is all paths of increasing length (in the
limit, infinite length) leaving i . The numerator is only paths
leaving i that route through one of it’s neighbors j .
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Result

The transition probability Pij ends up being:

Pij =
1

ρ(A)

ψj

ψi

Proof sketch: Use matrix multiplication & the power iteration
algorithm to compute the limit.
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Motivation

Often, A is not explicitly known.
Example: a social network.
Thus, ψ and eigenvector centrality is not known.
Maximal entropy random walk tends towards the well-connected
parts of a graph.
But the probabilities are defined based on ψ.
Can we approximate centrality without global information?
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Approximations of Pij

Cut off the limit at fixed values of k to approximate Pij ; call the
approximation Pk

ij

k represents something like search depth.
For reference:

P0
ij =

Aij

deg vi
, P1

ij =
Aij deg vj

n∑
j ′=1

Aij ′ deg vj ′

, P2
ij =

Aij

n∑
x=1

Ajx deg vx

n∑
j ′=1

Aij ′

n∑
x=1

Aj ′x deg vx

P0
ij is just the basic random walk.

In practice, P2
ij is “close enough”.
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Comparison

(a) Basic (b) Maximal Entropy (c) Approximation
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Conclusion

To find the “center” of a graph:

If A is known, solve for ψ, using the power iteration algorithm
if necessary.

If A is not known, construct an approximation to the maximal
entropy random walk and “follow” it.

Applications:

Disease prediction.

Infrastructure planning.

Popularity contests.
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Questions
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