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1 Decision Trees

Decision trees are tools that showcase “decisions” and their possible outcomes. They have
extensive utility in displaying how an algorithm works, or in determining the optimal strategy
(which is nothing more than a sequence of decisions), or in classifying data. Abstractly, a
decision tree is a directed tree graph. The root node is the source, and every node thereafter
is either a decision node or an end node. Decision nodes have multiple outward-pointing
edges, and there is a splitting rule at each node governing the significance of each edge
leading away. It is this splitting rule that constitutes the “decisions” that a decision tree
displays. The splitting rule itself can be any conditional statement:

• Deterministic: “If you have previously filed your taxes this year, go to node X; else,
go to node Y.”

• Stochastic: “With 50% probability go to node X or Y.”

• Non-numeric: “If today is Monday, go to node X; else, go to node Y.”

The following definitions from [10, p. 660] will prove useful:

• An object can be described entirely by a set of attributes, each of which can be ordered
(such as numerical data) or unordered (such as boolean data).

• The domain is the set of all objects that are valid inputs for a decision tree.

• A class is a label assigned to objects in the domain. Each leaf node of a decision tree
has a class identified with it.

• The concept is the “true” mapping (defined based on prior knowledge about the do-
main)from attributes to a class. A decision tree is a mapping from attributes to the
class. Often the concept is not explicitly known, such as in natural language processing
problems.

• A goodness measure is a function mapping all possible splitting rules to a numerical
score for comparison.[7, p. 347]

• Discrimination is the process of deriving decision tree nodes from existing data sets.

• Classification is the process of applying an existing decision tree to an object to deter-
mine its class.

• An object in the domain is classified by starting at the root node, and following the
splitting rules to subsequent nodes until a leaf node is reached. The class identified
with the leaf node is thus assigned to the object.

• The proportion of objects for which the decision tree correctly assigns the class label
(based on the concept) is the accuracy of the decision tree; conversely, the proportion
of objects for which the decision tree assigns a class label that is not correct is the
error of the decision tree.
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The end nodes are the leaf nodes of the graph; they have only one directed edge leading
into them. In some circumstances end nodes can be identified together, allowing some degree
of violation to the tree structure. For example, a decision tree for the yes or no decision
“should I buy this object” may have many decisions and consequently very many end nodes;
but ultimately, the only outcomes can be “yes” or “no”.

The design of a decision tree thus amounts to constructing splitting rules in the same
way one would construct steps of an algorithm. In particular, it is possible to use decision
trees to structure an algorithm for classifying data: if we start with a root node, each
additional splitting rule we add will have the effect of partitioning the data set depending
on the different outcomes of the splitting rule. For example, consider the following decision
tree from cladistics in evolutionary biology. In this instance, the purpose of the tree is to
provide a classification scheme for the domain of “small insects”.

Does it have wings?

Beetles Does it have a stinger?

Wasps, bees, ants Does it metamorphose?

Butterflies, moths Flies

Yes No

Yes No

Yes No

Figure 1: Taxonomy of certain insects

If we examine all the leaf nodes, we see that the only possible outputs of the algorithm
are “beetles”, “wasps, bees, ants”, “butterflies, moths”, and lastly “flies”. Moreover, con-
sider the parent node to “flies” and “butterflies, moths”: any object that we are attempting
to classify with a decision tree that reaches this node must necessarily have wings and no
stinger; else we would not be at this node. In other words, an edge between two vertices
directly corresponds with an outcome for the splitting rule; traversing that edge means that
the object under scrutiny must satisfy that particular conditional in the splitting rule. This
principle of decision trees representing partitioning of a set can be generalized to arbitrary
paths on decision trees: [10, p. 663]

Given a set S, a filtration of S is a collection of subsets Si such that if i ≤ j, then Si ⊆ Sj.
In the context of decision trees, each path through the tree results in a filtration:

Proposition 1. For any decision tree on domain D, all paths on the decision tree describe
a filtration of D.

Proof. By induction on length of paths:
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Base case: for a path of length 1 in a decision tree, we represent it as the edge e1. This
edge e1 is traversed only when the splitting rule at the start of the edge allows it. Thus if
we evaluate this splitting rule over all elements of D, let S1 be a subset of D consisting of
those objects in D that obey the splitting rule. We can thus identify S1 with the edge e1.
Thus we have that S1 ⊆ D is a filtration of D.

Inductive hypothesis: for all paths of length n−1 in a decision tree, every path describes
a filtration Fn−1 of D.

For a path of length n in the decision tree (denoted e1e2...en by edges, or v0v1...vn by
vertices), we can split it into a path of length n−1 leading to vertex vn−1, and then a path of
length 1 from vertex vn−1 to vn. By the inductive hypothesis, the length n−1 path describes
a filtration of D where Si ⊆ Sj for i ≤ j: {S1, S2, ..., Sn−1}. The vertex vn−1 will correspond
with the smallest set in the filtration S1; now, the edge en between vn−1 and vn is defined
by the splitting rule at vertex vn−1. So we can define a new set, S0 ⊆ S1, consisting of all
objects in S1 that follow that splitting rule. Thus the path of length n defines the filtration
{S0, S1, ..., Sn−1}.

Every path from the root node to a leaf node is therefore equivalent to a conditional
statement of the form “if [1] and [2] and ... and [n], then [c]”, where [1], [2], ... are the
conditions given by the splitting rules guiding the path and [c] is the class label at the leaf
node. It is this identification that allows for the ability to identify a node in a tree with a
certain subset of a filtration, by way of the path from the root node to that node. Objects
can be said to be “at” a node (equivalently, a step in the algorithm) if they are a member
of that node’s subset of the filtration. Moreover, if we assume that questions are nontrivial
in the sense that any question has more than one response that is possibly valid, then this
filtration definition implies that cycles cannot exist in the decision tree structure (since no
set can be a proper subset of itself).

In the context of survey construction, we will refer to an analytical outcome as a class
of objects that cannot be distinguished using the questions from a survey; the analytical
potential is the set of all analytical outcomes.

2 Decision Trees as Surveys

The goal of a survey is to classify a population into sets depending on their responses. For
example, a survey might be used to determine the demographics of voters for various candi-
dates. In this context, we can both represent the survey as a decision tree as a descriptive
tool, or use decision tree methodologies to create a survey with the target analytical outcome.

In general, decision trees can be thought of as a data exploration tool, one that can
quickly organize and classify data by determination of (ideally) simple tests on the data set
[7, p. 345].
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2.1 Descriptive Decision Trees

Given a survey and a data set of its responses, we can construct the decision tree for the
survey directly. We make the root node of the decision tree the very first question, and
then we create edges to the next level of the tree based on the possible responses. The
nodes at the other end of the edge will all be the second question (assuming the survey
does not direct its participants) or otherwise, the question that responders are directed to
answer next. The splitting rule will be a weight from 0 to 1 representing the proportion
each response receives. Now, for the remainder of the tree proceed in a similar fashion: at
every node, construct edges for each possible response to the question that node represents,
and assign probabilities to each edge based on the proportion of responses given that they
have responded accordingly to all of the previous questions represented by the path from
the node to that vertex[7, p. 347]. In this way we see that decision trees adapt conditional
probabilities; while a single question in the survey may be represented by many nodes, each
node in particular represents the different possible prior responses for the survey leading up
to that question. The decision tree as a whole will represent the data set of its responses in
a way that makes not only the distribution of responses known but also how effective each
question was at distinguishing between people surveyed. An ideal question should divide the
population based on response as evenly as possible.

2.2 Decision Tree Survey Construction

Decision trees can also be used to design surveys that have an intended classification. The
goal of using decision trees to construct surveys is to aid in finding the optimal decision
tree for some criterion. For examples in similar contexts, in both evolutionary biology and
linguistics tree-like structures are used to determine the most likely configuration of inter-
mediate species given the current-day taxonomy; see [2], [11].

The problem is an optimization problem. Subject to some analytical potential that we
wish to achieve, what is the proper determination of splitting rules in the decision tree that
will describe this analytical outcome and optimizes some other quality?

For a trivial example: we can establish a decision tree consisting of a root and the split-
ting rule at the root simply has every analytical outcome in its conditional statement. Thus
this tree will have as few nodes as possible, and be as short as possible, but this amounts to
writing every question in the survey as one enormous compound question.

Even if we mandate that every splitting rule can only constitute one question, there
are lots of possible determinations that depend on what is being optimized. For example,
to construct a survey whose questions are as simple as possible, we would use only binary
splitting rules- yes or no questions. However, if we were seeking to use a survey for non-
categorical data, this approach is not ideal. In order to determine a numerical quantity, the
all yes-or-no decision tree would have to represent inside it what amounts to binary search
over the integers- when a multiple-response “binning” question may be more appropriate.
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The following procedure is one way to construct a decision tree whose survey has some
given analytical potential [7, p. 349]:

• If all possible objects at the current node occupy the same analytical outcome, make
the node a leaf node identified with that outcome.

• If not, score all possible splits of the objects at the current node using a goodness
measure and choose the best split.

• Create child nodes based on the best split, and partition all possible objects at the
current node based on that splitting rule. Each child is now identified with a subset of
all possible objects at the current node.

• Repeat on all non-leaf nodes.

The question of which heuristics to use to produce decision trees has been covered in the
past in multiple papers[5]. The main heuristics considered here will be:

1. Minimize the expected number of questions (survey brevity).

2. Minimize the expected number of possible responses to a question (question simplicity).

There is a fundamental trade off between these two heuristics:

Proposition 2. Given a number N of classes, let T ∈ TN be an arbitrary decision tree that
has at least N classes. If DT represents the expected number of questions total in the decision
tree T , then for any fixed value B of expected number of possible responses we have:⌈

logN

logB

⌉
≤ min

T∈TN
DT

Proof. As mentioned earlier, the optimal splitting rule at any node is one that equally
partitions a set to each of the child nodes. Thus, if B is fixed, the optimal tree with this
value of B is one where every node has precisely B many children; with N many distinct

classes represented as N leaf nodes, we have that

⌈
logN

logB

⌉
is a lower bound representing the

most ideally-balanced tree where every node (except for perhaps those immediately preceding
the leaf nodes) has B children. Any other decision tree must have at least this depth.

This represents a rather intuitive fact about classifying objects: in order to achieve a
richer analytical potential (i.e. discriminate between more classes), more questions or more
detailed questions are required.

2.3 Case Study: EM Survey

The analytical potential used here will be a simplified version of the analytic potential for
the EM survey. In particular, suppose that the only outcomes of the survey are as follows:

• Unemployed
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• Employee at a family business.

• Employee in a non-family business with union status U1, union coverage U2, with job
duration J.

• Self-employed.

The attributes of the problem domain are thus characterized, at most, by the following
list:

• Union coverage given employed: true or false.

• Union status given union coverage: true or false.

• Employment status: four possibilities (unemployed, family business, self employed,
employed).

• Job duration given employed: five possibilities (permanent, seasonal, temporary, term,
casual).

There are 19 total possibilities for responses (4 employment statuses, 15 sub-possibilities
given employment): thus our target decision tree must have at least 19 distinct leaf nodes
in order to correctly classify via this analytic potential.

The first tree to be considered will be a binary tree structure. For 19 distinct leaf nodes,

at least 5 questions are required. Let the balance of a node be defined as α =
1 + L

2 + L+R
,

where L and R are the number of nodes in the left and right sub-tree respectively [10]. The

goodness measure will be the score 1− 4

(
α− 1

2

)2

.

Among all possible splits of the 19 total possibilities, the best possible balance is for
sub-trees of size 9 and 10. This is achieved with the question “Were you employed with
union coverage?”: there are ten possibilities given employment with union coverage (five job
durations and two possible union membership statuses), and nine otherwise.

Given employment with union coverage, the best possible balance is for two sub-trees of
size five. This is achieved with the question “Were you a union member?”: a yes answer
has five possibilities for job duration, and a no answer has five (those same five job durations).

From here, both sub-trees are virtually identical: they accomplish the task of determin-
ing job duration. An example series of questions is “Was this job permanent or seasonal?”
followed by “Was this job temporary?” and lastly “Was this job casual?”.

Returning to the other possibility, a similar sequence of questions suffices to split by the
balance goodness measure.

The other half of the tree proceeds similarly.
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Q1

Q2

Q3

Q4

1 2

Q4

3 Q5

4 5

Q3

Q4

6 7

Q4

8 Q5

9 10

...

(E, union coverage)

union member

perm, sea temp, term, cas

temporary term, cas

not union member

perm, sea temp, term, cas

temp term, cas

Else

Figure 2: Balanced Tree Survey

The second goodness measure for tree construction will be expected number of questions
asked. The approximation to expected number of questions asked will be implement a con-
straint on the maximum depth of the tree. This is primarily because this specific problem
does not have any prior probability distribution on possible responses. The method to ac-
complish this will be to use a tree structure similar to a B-tree: instead of only permitting
binary responses, suppose that up to five responses per question are allowed in the design;
moreover, that the depth of the tree is now constrained at 2. The limitation is increasing the
number of question responses (generally) increases the question complexity. However, the
notion of question complexity is not directly linked with the number of possible responses;
other considerations, such as brevity in statement and simplicity of statement, are significant
[9].

With 19 outcomes, increasing the number of responses to five and constraining to two
questions results in a decision tree such as the following:

• Question 1: “Were you (a) either unemployed, employed at a family business, or self-
employed, (b) employed with union status and coverage, (c) with union coverage and
without union status, or (d) without union status and without union coverage?”
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• Question 2.1: “Were you (a) unemployed, (b) employed at a family business, or (c)
self-employed?”

• Question 2.2: “Was the job (a) permanent, (b) seasonal, (c) term, (d) temporary, or
(e) casual?”

The tree is as follows. Note the prevalence of very similar sub-trees, just as in the above case:

Q1

Q2.1

U EFB SE

... ... Q2.2

1 2 3 4 5

a

a b c

b c d

a b c d e

Figure 3: Shorter, Broader Tree Survey

In this case, the question of choosing the proper depth or breadth for a tree was informed
primarily by the presence of a categorical variable with five categories. In general, discus-
sions on optimal decision tree design can be found in [10]. Minimizing the size (by number
of nodes) of a decision tree is known to be NP-hard[5].

One strength of decision trees is that they are very flexible in their design: the analytical
potential can be made coarser or finer as necessary, and the goodness measure can be chosen
in a manner that is highly tailored to application. This can be a double-edged sword, as the
NP-hard nature of decision tree size optimization indicates.

One significant weakness in the two decision trees above is that they do not have any
non-response options. This can be potentially rectified by adding to the space of each at-
tribute a “NA” possibility, thus increasing the overall size of the tree significantly. Thus,
instead of a true/false response for union membership there would be a true/false/NA re-
sponse. This is subject to the survey designer’s considerations for treatment of non-responses.

Lastly, the decision trees above also suffer from poor handling of erroneous responses
by survey participants. Each splitting rule is predicated on completely accurate responses.
One potential way to address this is to add redundant questions. Discussion of constructing
surveys that perform well with erroneous responses is difficult because any survey would
suffer from this vulnerability; surveys are not lie-detectors.
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3 Decision Tree Transformations

Externally, modifying a survey to change its analytical potential amounts to changing the
possible classes in a decision tree (i.e. its leaf nodes). However, at any given internal node
the selection of an optimal splitting rule can result in different splitting rules being chosen
when classes are modified. In general, splitting rules can be replaced by only very small
changes in the survey; in [6] an example is given where only a 3% change is sufficient to
replace a splitting rule.

Internally, it is very easy for a survey designer to manipulate the decision tree and get
new surveys. The simplest operation is to make a question simpler: noting the prevalence of
very similar sub-trees in the example decision trees, a question with multiple responses can
be split by grouping together some of the responses and inserting internal nodes that lead
to them. In a diagram:

Q1

1 2 3 4

Q1

Q2.1

1 2

Q2.2

3 4

Figure 4: Splitting and Merging Questions

Similarly, questions can be removed by doing the reverse of this process. Given a node
with children {C1, C2, ..., Cn} with splitting rule given by “if Pi, go to Ci”, it is possible to
accumulate all of the splitting rules from the children. For each child Ci, let the splitting rule
at Ci be “if Qi

k, go to node N i
k”. The accumulated splitting rule at the end then becomes a

combination of all possible child rules with the original splitting rule: “if Pi and Qi
k, go to

N i
k”.

The ability to merge questions indicates that it is possible to merge splitting trees as well.
Thus, a globally complex problem can be approached by first creating decision trees for much
simpler sub-problems, and then merging the trees together. For example, the lower sub-trees
for the balanced sub-tree from earlier serves the purpose of locally identifying employment
duration. The drawback of this approach is that it results in many more leaf nodes than is
actually necessary [10].

Rearranging questions is far more problematic. The issue is that the splitting rule at
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an internal node represents a conditional statement of the form “Given (all the statements
represented by the path from the root node to here), go to nodes according to this rule”.
This indicates that the splitting rule at a given node is dependent on all of the nodes
between the root node and the given node. Thus, all children of a node that is modified
must be updated to account for the modified conditional statements. For example, in the
employment survey above- asking either of question 2.1 or question 2.2 first would not make
any logical sense, since the preconditions they depend on (employment, union membership,
and union coverage) no longer exist and therefore must be added to the question. Similarly,
the responses that formerly took for granted some given information must now be modified
to reflect the lack of that given information: for example, if we were to ask question 2.1 first
then the possible responses must now include “unemployment”, a response that used to be
in the parent node (question 1).

4 Survey Charts Comparison

Survey charts are another approach based on graphs that are used for survey construction
and design. The survey chart itself is a graphical representation of a survey, where every
question is a node and directed edges between nodes represent the order in which questions
are asked. There are two transformations for survey charts, which serve as tools to derive
other surveys without changing the analytical potential. The main comparisons between
survey charts and decision trees will be how surveys are represented and how transforma-
tions of surveys are implemented.

Decision trees require much more space than survey charts. This is because there are at
least as many leaf nodes as there are classes in the end. This indicates that the total number
of nodes is at least as large as the number of possible analytical outcomes. This is in contrast
with survey charts, which have as many nodes as questions and conditions in the survey.
Survey charts do contain edges that are never traversed because the conditions for traversal
would be contradictory; in contrast, for decision trees, every splitting rule (and subsequently,
every edge) must represent a distinction between different, nonempty analytical outcomes.

There are two types of transformations for survey charts. One of the transformations is
analogous to the merging transformation for decision trees: combining questions to simplify
the overall structure of the survey. The other transformation on survey charts entails re-
arranging questions. For decision trees, the high dependence between a node and all of its
children means rearranging questions may require significant changes to the topology of the
tree. In contrast, the rearranging transformation in survey charts allows for survey designers
to manipulate the order of the survey to arrive at progressively improved surveys with re-
spect to expected number of questions. The transformation of splitting questions on decision
trees does give designers the opportunity to simplify their questions. The consequence of
splitting a question, however, is that it adds to the overall length of the survey.

Unlike survey charts, decision trees can be employed to create surveys.. Given an an-
alytical potential and goodness measure, a decision tree can be made through inductive

11



construction as in [7], [10]. This suggests the following strategy for survey designers: if
a target analytical potential is desired, first employ a decision tree discrimination process
to build the corresponding decision tree, then use a survey chart approach for additional
improvement.
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