Larry Fenn

Problem 6. Integrability of f on R does not necessarily imply the convergence of f(x) to
0 as z — oo.

(a) There exists a positive continuous function f on R so that f is integrable on R, but
yet limsup,_, . f(z) = oo.

(b) However, if we assume that f is uniformly continuous on R and integrable, then

lim f(z) = 0.

|z]—o0

(a) The function that satisfies this condition is, in short, triangles of increasing height
but with decreasing area. Specifically, the function we will use is

0 r<n
4 5 1
nxr—mn n<r<n+4+ -3
= - n >
f(x) Cnbrtonan® itk <o<nd foralln >2,neN
0 n+%<x

1
This function is zero up to n, then it increases linearly to n to the point (n + — n), then
n

2
decreases linearly to the point (n + = 0); the end result is the graph looks like a sequence
n

of peaks, each of which whose integral is # and whose height is n. f is positive, and f is
continuous as each of the pieces have been carefully chosen to agree at their endpoints (and

linear functions are continuous). The integral of f is the area under the graph: in other
2

oo
1 . : N :
words, / f= E — . This is a known convergent series, whose sum is i 1; hence f is
R n
n=2

1
integrable. However, since f is unbounded (since f(n + —) = n for all n > 2,n € N) we
n

conclude that limsup,_,. f(z) = oo.

(b) Claim: f uniformly continuous on R, f integrable on R — lim f(z) =0

|z|—o00
Proof. Assume for sake of contradiction that ‘llim f(x) # 0. We already know that for
xT|—00
the general case f is said to be integrable if |f| is integrable in the nonnegative sense
of Lebesgue integrability. Hence if we can show |f| = ¢ is not integrable under this as-
sumption, that f is not integrable under this assumption- and thus, we would have our
contradiction. If f is uniformly continuous then ¢ is also uniformly continuous, since
l9(x) = g(w)| = [If@)] = [fW)|| < |f(x) = f(y)| by the triangle inequality. Without loss
of generality (since we can always use f(—x); f(x) uniformly continuous and integrable
means f(—z) is also uniformly continuous and integrable) we can rewrite this assumption

as zh_{](f)lo f(z) #0.

Thus, by assuming the limit is not zero, there exists an € > 0 such that for all £ > 0,
there exists an x > k such that |f(z)| = g(z) > e. We will use the instances where k is a
positive integer, and we will label the x; we get with this hypothesis so that we now have
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a countable sequence {z;} such that g(zx) > €. Note that it is entirely possible for x; and
ZTry1 to be the same point; however, it is impossible for this sequence to be bounded. If
{zx} were bounded, then there would be a largest member z*: if we let m > z* be the next
largest positive integer, the assumption above guarantees the existence of an x,, such that
T > m and g(x,,) > € but x, > m > z*.

By assuming the limit is not zero, we are given an ¢ > 0 and an infinite collection
{zx} such that g(xx) > €. As a matter of housekeeping, call {Z;} the collection of unique
xy; thus, while {x;} may have duplicate elements, {Z;} does not. Using this same €, we

€
make use of the hypothesis of ¢g’s uniform continuity on 5 there exists a > 0 such that
1T, — 2| <d = |g9(Tk) — g(x)| < % for every zj. Two cases:

(1) 9(Zx) = g(=)
In which case

5 > 19@) — 9(@)| = g(ix) - 9(a)
g(w) > g(Tx) — %; g(Zg) > € so
g(x) >§for:v:]5ck—x| <4

(2) g(@x) < g(x) .
In which case g(z) > g(Zx) > € > 3 for z : |z — x| < 9.

Thus, in general for every 7 the value of g(z) on the ball Bs(Z;) of radius § centered at
T is bounded below by % Hence the integral of g on every one of these Bs(%) is bounded
below by the integral of % on the same Bjs(Z)) (monotonicity of the integral; ¢ > 0 and

€
— > 0). Thus, since the integral of the constant function is easily evaluated,

2
€
/ g>20-—==de
Bs(Zk) 2

The key detail is that € was given at the start by assuming for sake of contradiction, and
that 6 was furnished with respect to € only. Thus, this result is true at every one of the

Ty, points. Call the set B = UBZ' the countable union of all the Bs(Z) balls which are all
i=1

disjoint with each other. Since there are countably many unique 7 and Z; is unbounded,

for any ¢ we will have still have countably many, now disjoint Bs(Zy).

/ g= / g+ / g by additivity. g is nonnegative, so this can be rewritten as / g > / g
B e B

via monotonicity (¢ > 0 = / g > 0). However, the integral over B of g is the integral
BC
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of g over countably many disjoint Bs(Zy)- since they are disjoint, we apply additivity to get

that
/gZ/Bg:ZZ:;/Big
ziée
i=1

Observe that de > 0 is just some positive constant, so that sum diverges- hence | g = oo,

B
and hence ¢ is not integrable, and hence f is not integrable, contradicting our original
assumptions. Thus lim f(x) =0 O

|z|—o00
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Problem 8. If f is integrable on R, show that F'(z / f(t) dt is uniformly continuous.

Proof. Let f be integrable on R, let ¢ > 0. By Proposition 1.12(ii), there must exist a 6 > 0
such that for £ a measurable set,

/]f|<e when m(E) < §

Thus, for any interval in R with endpoints x,y, z < y we have |z — y| < §; thus, we can
apply 1.12(ii) on this interval and conclude

Y
/]f]<e for [x —y| <6

Evaluate |F(z) — F(y)| = |F(y) — F(z)|:

[F(y) )| = ‘ / / f‘ by definition
- [1

y
< / | f| triangle inequality

<e€

a consequence of additivity™

Hence for any € > 0 there exists § > 0 such that for any z,y with |z — y| < J we have
|F(z) — F(y)| < € F is uniformly continuous.

*/ f_/f:/fforE,Fdisjoint. -
EUF E f
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Problem 9. Chebyshev inequality. Suppose f > 0, and f is integrable. If a > 0 and
E, ={z: f(z) > a}, prove that

m(E) < [F

Proof. Let a > 0 and E, = {z: f(x) > a}. Decompose /f into / [+ f. fis
o Eg

nonnegative, and the integral of a nonnegative function is nonnegative. Since f is integrable,

both of these decomposed integrals must therefore be finite and nonnegative (else [ f would

be infinite). Now:

Jr=]ore 1

>a-m(E,)+ [ f by definition of z € E,: f(x) > «; monotonicity
-/
a
1

ES
a/

1

f>m(E,) +— | f>m(E,) since f is nonnegative and o > 0
« E¢

f

> m(E,)
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Problem 11. Prove that if f is integrable on R?, real-valued, and / f(z) dz > 0 for every
E

measurable F, then f(x) > 0 a.e. x. As a result, if /f(a:) dx = 0 for every measurable F,
E
then f(z) =0 a.e.

Proof. Let A be the set {z : f(x) < 0}. The condition f > 0 a.e. amounts to a claim that
the points where f < 0 are a set of measure zero, that is, m(A) = 0. Assume for sake of
contradiction that m(A) # 0; m(A) is some nonzero value. Thus for x € A we have f(z) < 0;

so —f(x) > 0 and therefore /—f(m) > 0 by monoticity (since m(A) > 0 and —f(x) > 0
A

for x € A this integral cannot be zero). By linearity this means —/ f(z) > 0; /f(x) < 0.
A A

However, we have as an assumption that [ f(z) > 0 for any measurable set E. This is a
E
contradiction, thus f > 0 a.e.

Now, if we claim / f(z) dx = 0 for every measurable E: first, we can apply the result
E

just proven. [ f(x) dx = 0 > 0 for every measurable E, so f(x) > 0 a.e. z. Second, we
E

can do the same thing, except to —f(z): since /f(a:) dr = 0, /—f(x) dx = 0 as well.
E E

Hence /—f(x) dx = 0 > 0 for every measurable E, so —f(z) > 0 a.e. x as well. Thus
B
f(x) > 0> f(z) ae., and so f(z) =0 a.e. O
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Problem 15. Consider the function defined over R by

fz) = 2 f0<x <1,
- 0  otherwise.

For a fixed enumeration {r,} -, of the rationals Q, let
Fz) =Y 27"f(x —ry).
n=1

Prove that F' is integrable, hence the series defining F' converges for almost every z € R.
However, observe that this series is unbounded on every interval, and in fact, any function
F' that agrees with F' a.e. is unbounded in any interval.

We will evaluate /F(x) dx = /ZQ‘”f(x — rp) dx. Note that the function a,(z) =
R R p=1

27" f(x — r,) is nonnegative (f is nonnegative, being zero or the square root reciprocal) and
for every n > 1, f(z — r,) is measurable®). Using Corollary 1.10, we can exchange the
integral and summation processes, yielding

/RF(x) iz — /Rg;z—nf(x ) de = i /RQ_”f(x ) da
Y g /Rf@; ) da

0 1—ry
= Z 2_”/ f(z —ry,) dx because f = 0 outside (0, 1)

Hence / F(z) dx = 2; again, with an application of the results of Corollary 1.10, if / F(z) dx
R R

o0
is finite we immediately have that the series Zan(x) converges for almost every x.

n=1
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Let (v,w) be any interval in R, and let ¢t € (v,w). Consider the value of F(t): F(t) =

Z 27" f(t —r,). For any t € R we can find a sequence of rational numbers approaching

n=1

27’!’1
t from the right. Thus the term on the inside of the series, 27" f(t — r,) =

t—r,)/2
does not have a bound and thus the series as a whole is unbounded for any irgtervaTll.) It
F is a function that agrees with F a.e. then on any interval with nonzero measure there
must be a point t* such that F(t*) = F(t*) (else F and F would not agree on a set of
measure greater than zero); but since we showed earlier that the series F'(t*) stands for is
unbounded everywhere, F/(¢*) must also be unbounded on any interval with nonzero measure.

(*): f(z —ry,) is measurable: For all & > 0 the set £ = {z: f(z —r,) > a} is the set
of values  where (z —r,,)2 > a. By definition for « outside (r,,1 4 r,) the function has

zero value and hence is not in £. In other words, E is the set of values where — > @ — ry;
Q
r, < x < 1+ r,. Thus the measure of F is the measure of the open interval between the
1
points 0 and — + ry,; in other words, E' is measurable for any a > 0, and thus f(z —r,) is
o

measurable.
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Problem 4. Prove that if f is integrable on R?, and f is not identically zero, then
fr(x) =

2l for some ¢ > 0 and all |z| > 1.
x

Conclude that f* is not integrable on R%. Then, show that the weak type estimate
. c
m({e: fr@)<ap < S

for all @ > 0 whenever [|f| =1, is best possible in the following sense: if f is supported in
the unit ball with [|f] = 1, then

m({z: f*(x) >a}) >

for some ¢ > 0 and all sufficiently small «.

Q\

Q|

Proof. f is not identically zero means there is some set E of nonzero measure such that f # 0
on E. Let C be a ball that contains E- without loss of generality we can suppose that C
has radius 1 and is centered at the origin (the invariance properties of the Lebesgue integral

allow us to perform this). / |f(y)| dy > 0 because on E we have f # 0 so |f| > 0; f is
c

integrable so we can call [ |f(y)| dy = c¢1,00 > ¢; > 0. By the property of the supremum,
C

1
f*(z) > (D) / |f(y)| dy where we say B has radius x (so B can contain the point z),
m B
B centered at the origin. We know that the integral part is at least ¢; for |x| > 1 because

B D C in that case (monotonicity with the nonnegative function |f(y)|). Additionally from
chapter 1 that the measure of B is ¢y ]x\d where ¢ is some positive constant related to the

4
volume of the ball (like ?ﬂ for the sphere). Thus, f*(x) > # with & =¢> 0 and |z > 1.
T

f*(x) is not integrable- by the above result we have that f* is nonnegative and bounded
c
below by W > 0 (since ¢ > 0). Thus we demonstrate f* is not integrable by noting that
x
1
W is not integrable. This is because the integral / W = 2alog|z| for some nonzero
X R4 x
constant a (taking successive antiderivatives on the positive parts and negative parts respec-
tively). Evaluating this integral over R? we note that it does not converge. Thus, since f*
is bounded below by a nonintegrable function, f* must be nonintegrable.

For the weak type estimate, let E, be the set {z : f*(z) > a}; so, for x € E,, there exists
a ball B, such that z € B, and @ /Bz|f(y)| dy > «. Now, notice that if we only are
concerned with small values of « that the unit ball is always such a ball that contains z-
since / |f| = 1 on the unit circle, and f* is the supremum over all balls containing x. Thus

the measure of F, is guaranteed to be the volume of the unit ball; thus we can choose ¢ to
be the appropriate constant such that m({z : f*(z) > a}) =1=£. O
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Problem 5. Consider the function on R defined by
__ 1 if lz| < 1
= l|z[(log 1/]a])? - 2
/(@) { 0 otherwise.
(a) Verify that f is integrable.
(b) Establish the inequality

7 2 o og 177

to conclude that the maximal function f* is not locally integrable.

for some ¢ > 0 and all |z| < 1/2,

1
2

(a) First, notice that / f is really / f; from there, we can eliminate the absolute value
R =1

symbols (f is an even function) by decomposing the integral into

0
[r=[ it [ e
0 xlog %—x(log(:))

1
For the positive side, the u-substitution u = log (—), du = ——dx gives us
x x

/0 % (log / 2

B 1
~log (1)

SN

1
Evaluating the antiderivative at 0 and 3 we see that this integral exists. Similarly, for the

—1
negative side (x is a negative value for what follows) use the u-substitution u = log (—),
x

-1
du = —dz
T
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-1
Evaluating this antiderivative at - and 0 shows this integral also exists. Hence the integral
/ f is finite; f is integrable.
R

(b) Note that f(z) as defined in the problem is already a nonnegative function. Using our
results for the antiderivative, we have that for any ball B centered at the origin with radius r

0 1 -1 2

Ir|
o= o[-y ) T w

Thus, using the property of supremum, f*(z) > /|f(y)| dy; where B is a ball that

m(B) Jg 5
contains z; in other words, the radius of B is |x|, so / lf(y)|dy = —F——~
B og <
-1

)
||
(¢ > 0 is a constant related to the volume of this ball). So f*(x) > ¢

~ aflog (1Y)

c
just some positive constant, we can re-dress this result to get f*(x) > ——————— as desired.
|| log (i)
||
11

With our inequality from above, we have that f* is bounded below on the interval (_7, 5)

by the function ;; thus, we can show f* is not locally integrable by determining
|| (log 1/]x)

2 c
/ ———————— Consider the positive part; this function is even, so we observe that our
1 [a[(log 1/]x])

2

and m(B) = 2|z|c

; since c is

answer is twice the integral over just the positive half. Use the u-substitution v = log —;
x

-1
du = —dz
T

1 1
2 C 2 C
———dr =2 —d
/1 |z|log 1/|x| ’ /0 xlogl/x v

2
log21
= —2/ — du
0o u
<1
:2/ — du
log2u

By observing that the harmonic series diverges, by comparison this integral also diverges;
thus the lower bound of f* is not integrable, and hence f* is not integrable either.
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