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1 Introduction

1.1 Entanglement, Locality, and Hidden Variables

The observation of various, tangible effects explained by quantum mechanics poses
a question of interpretation- made famous in the Bohr-Einstein debates about the
philosophical problems raised by quantum theory. For example, quantum mechanics
posits that physical properties of a particle such as its position or momentum are at
first undetermined, given only by a “probability wave function” that describes the
various possibilities for a measured quantity (such as position) and the probability
of finding the particle in any given possible state. Additionally, quantum mechanics
allows for the possibility of multiple particles to be encoded by a single probability
function- that is to say, it is possible to create a pair (or more) of particles such that
it is impossible to only determine a physical property like position for one, without
additionally determining it for the other. The term for this phenomenon is quan-
tum entanglement.

This conclusion yields some very non-intuitive implications. It means that, if we
had a procedure to create pairs of particles demonstrating this behavior, we could
separate the two particles by a vast distance and then perform a measurement on
one- in an instant, with no “transmission” of effects, we would also know what the
property of the paired particle is. This is Einstein’s “spooky action at a distance”,
and this is the heart of what is now termed quantum nonlocality. In short, how
did the other particle know what to do?

In the classical view, locality is the principle that any object will only be in-
fluenced by its immediate surroundings. The conclusions of special relativity allow
us to formulate this in a more rigorous sense: no material, energy, or even infor-
mation can travel faster than the speed of light. The biggest proponent of locality
as an axiom for the universe was Einstein, and indeed General Relativity was born
out of asking how to explain gravity while maintaining this principle. Not to get too
distracted, but the thought experiment behind it goes as follows: if the sun were com-
pletely removed from existence right now, would the Earth fly away even as light was
still traveling towards us from the now-removed sun? What’s the “speed” of gravity?

Thus, when the theoretical conclusions of quantum mechanics seem to present a
challenge to locality, Einstein’s resolution was to propose that quantum mechanics
was as-yet incomplete; that there were still unknown hidden variables that were
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at play causing the entangled particles to have their measurements show up as being
seemingly correlated with one another. As it turns out, it is impossible for the
presence of hidden variables to explain quantum nonlocality.

1.2 Primer on Polarization

One of the particles that have been found capable of becoming entangled is the pho-
ton; through the use of various physical apparatus it is possible to create pairs of
photons that are entangled in their polarization. Quantum mechanics asserts that
an individual photon can be polarized in a similar way as light. The next section
concerns a summary of how light polarization is described in a mathematical sense.

Light as an electromagnetic wave can be polarized. It is important to recognize
that light is a wave traveling through three dimensional space, so its polarization
is of a two-dimensional nature (the third dimension is the direction it’s going in).
Essentially, we can describe a light wave by combining two different waves, one in
the x component and one in the perpendicular y component (again, the z component
is aligned with the direction the light is going). Indeed, the simplest light polariza-
tion is linear polarization- light can be polarized so that it only oscillates in the x
direction, and hence resembles a traditional sine wave. Similarly, we can have linear
polarization in the y direction.

Figure 1: Various types of polarized light.

Finally, we can have the oscillations
in the x and y direction line up
as to have the wave spiral around
like threads on a screw, either in
the right-hand or left-hand direc-
tion.

To cut down the amount of three-
dimensional mathematics required to de-
scribe these various possible ways for
light to be polarized, there is a short-
hand for describing waves. Any wave
can be described using the symbols |...〉,
and waves can be added and subtracted
to each other as well as be scaled by a
scalar constant.
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The following list is of the specific types of polarization we will give a name to:

• The wave for x-linear polarization is given the symbol |h〉, and the wave for
y-linear polarization is given the symbol |v〉, in an analogy to something being
“horizontally” or “vertically” polarized.

Note that our choice of x and y is made only on the principle that the x and y axes
were perpendicular; in fact, light can be polarized linearly but not align with either
the x or y axis.

• For future reference, the symbol for light that is linearly polarized in a 45◦ to
the x axis (so, halfway between the x and y axis going counterclockwise) is
called “diagonally” polarized and is given the symbol |d〉; similarly, light that
is linearly polarized in a −45◦ to the x axis (so, halfway between the x and y
axis in a clockwise direction) is called “anti-diagonally” polarized and is given
the symbol |a〉.

It is a routine right-triangle trigonometry exercise to notice that, for example, |d〉 =
1√
2

(
|h〉+ |v〉

)
. Similarly, |a〉 =

1√
2

(
|h〉 − |v〉

)
.

• Finally, to describe polarization turning in the “right-hand” direction (from

the point of view of the source of light) we have |r〉 =
1√
2

(
|h〉 − i|v〉

)
and for

“left-hand” polarization we have |l〉 =
1√
2

(
|h〉+ i|v〉

)
.

The presence of the imaginary unit i is a matter of mathematical formalism to en-
code the clockwise and counterclockwise turning behavior.1

Quantum mechanical theory asserts that when we consider single photons prior
to any measurement a photon has its possible polarization described only in a prob-
abilistic sense. However, the difference is that now the states are undetermined; so
when a photon polarization state (as distinct from a light wave polarization state)

is given as |ψ〉 =
1√
2

(
|h〉 + |v〉

)
we are now discussing probabilities of finding the

photon in either state |h〉 or |v〉. Given in this form, we state that the photon is in
superposition between the polarization states |h〉 and |v〉; once a measurement is
made, the photon will be found to be in either |h〉 or |v〉. Notice that all of the po-
larization possibilities listed above amount to an expression made up only of |h〉, |v〉,

1http://acko.net/blog/how-to-fold-a-julia-fractal for more information.
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and constant multiplication by a real or complex number. Thus the photon, prior to
measurement, is given the undetermined polarization state |ψ〉 = α|h〉+ β|v〉, where
α and β are complex constants such that |α|2 + |β|2 = 1. The quantity |α|2 in this
equation represents the probability of finding the photon in polarization state |h〉;
similarly for |β|2. This notion, of being able to describe any polarization in terms of
a set of “base” states of polarization, will be important.

Finally, entangled photons can be described using subscripts. A non-entangled
system of two photons can be described as |ψ〉1 = α|h〉1 + β|v〉1, |ψ〉2 = γ|h〉2 + δ|v〉2
where |α|2 + |β|2 = 1, |γ|2 + |δ|2 = 1. An entangled system appears when it is impos-
sible to write the functions |ψ〉1, |ψ〉2 as two separate equations; for example, if we
entangled two photons so that they always had the same polarization state then their

probability wave equation will be |ψ〉12 = |ψ〉1|ψ〉2 =
1√
2

(
|h〉1|h〉2 + |v〉1|v〉2

)
. Any

entanglement equation describes a particular entanglement phenomenon; for exam-
ple, using the above equation if photon 1 is measured and has |h〉 polarization, then
what changes in the equation is that the state |v〉1 is now known to be impossible; as
a result, the probability of it occurring drops to zero, and thus |v〉1|v〉2 = 0; it does
not matter that we have not measured |v〉2, since it will never be the case that |v〉1
the whole term drops out. So we are left with |ψ〉12 = |h〉1|ψ〉2 = |h〉1|h〉2; the con-
clusion is that |ψ〉2 = |h〉2, which is precisely what we know to be the phenomenon
of entanglement.

1.3 Thought Experiment & Theorem

The following thought experiment and theorem establish the insufficiency of hidden
variables as an explanation for quantum nonlocality.

The scenario is there is a central space station that first creates three entangled

photons with entangled state |ψ〉123 =
1√
2

(
|h〉1|h〉2|h〉3 + |v〉1|v〉2|v〉3

)
. These three

photons are each sent to three separate observers, who themselves are all equipped
with the same measurement apparatus. The measurement apparatus can either
choose to measure the photon’s polarization in terms of:

1. Right-hand versus left-hand polarization, or,

2. Diagonal versus anti-diagonal polarization.

For right-hand versus left-hand, the machine gives a “+1” for right-hand polariza-
tion being registered and a “−1” for left-hand. For diagonal versus anti-diagonal,
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the machine gives a “+1” for diagonal and a “−1” for anti-diagonal.

The observers each receive their photon, select what their machine will measure,
and then record it. Afterwards, all three observers meet in the same place and
compare their measurements. In particular, they compute the numerical product of
their measurements.

Theorem 1.1. Hidden variables fail to describe quantum nonlocality.

Proof. Assume for sake of contradiction that there are hidden variables at play. That
is to say, when three entangled photons are created and sent to the observers, some
portion of their creation process “locks in” or otherwise describes the polarization
of the entangled photons- in the strongest case, it could be that the photons always
have a “true” polarization value that is simply out of reach from human observation
due to uncertainty, but is still a part of the universe. Whatever the nature of the
hidden variables, consider the following two scenarios:

1. Only one person uses the diagonal vs. anti-diagonal detector.

2. All three people use the diagonal vs. anti-diagonal detector.

The hypothesis that there is a hidden variable means that however these three en-
tangled photons are entangled (the “true” polarization behind the entangled triplet
might be that one must be vertical, one must be horizontal, and one must be right-
hand polarized, for example), that it should remain consistent despite a change in
measurement basis. We will demonstrate that a change in measurement basis in fact
influences the possible entanglement outcomes, which contradicts the notion that
whatever the “true” polarization outcomes are, they are independent of the mea-
suring tool used. Hence, by choosing a measurement apparatus, one is indirectly
choosing what quantity they will record by measuring; there cannot be a “true”
value that stands independent of observers.

2 Mathematical Interlude

What follows is the exact derivation of the state function |ψ〉123 for the two scenar-
ios. At the abstract level, each one of the entangled photons comes from the Hilbert
space C2 (we need two complex numbers, like how we needed α and β above, or how
we described the polarization of light as a two-dimensional property); the space of
particle entanglement outcomes is thus the tensor product of the respective Hilbert
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spaces each one of the particles comes from, and so the three-particle entanglement
is thus an element of C2 ⊗ C2 ⊗ C2. The existence of quantum entanglement is the
exact same as the existence of non-simple tensors, and what we are about to show
with equations is that a change of basis operates unpredictably on non-simple tensors.

The algebra of tensors is straightforward. By and large it shares the same features
as algebra on numbers with the exception of commutativity. Primarily, we will use
the following rules:

•
(
|X〉+ |Y 〉

)(
|A〉+ |B〉

)
= |X〉|A〉+ |Y 〉|A〉+ |X〉|B〉+ |Y 〉|B〉

• α|X〉+ α|Y 〉 = α
(
|X〉+ |Y 〉

)
• |X〉|Y 〉 − |X〉|Y 〉 = 0

The task will be to rewrite the expression |ψ〉123 =
1√
2

(
|h〉1|h〉2|h〉3+|v〉1|v〉2|v〉3

)
in terms of the other bases we have defined; either using |a〉, |d〉 or |r〉, |l〉. The
following rules are taken from section 1.2 and are manipulated into expressions of
other base states:

• |d〉 =
1√
2

(
|h〉+ |v〉

)
• |a〉 =

1√
2

(
|h〉 − |v〉

)

=⇒ |d〉+ |a〉 =
1√
2

2
(
|h〉

)
=⇒ 1√

2

(
|d〉+ |a〉

)
= |h〉

=⇒ |d〉 − |a〉 =
1√
2

2
(
|v〉

)
=⇒ 1√

2

(
|d〉 − |a〉

)
= |v〉

• |r〉 =
1√
2

(
|h〉 − i|v〉

)
• |l〉 =

1√
2

(
|h〉+ i|v〉

)
7



=⇒ |r〉+ |l〉 =
1√
2

2
(
|h〉

)
=⇒ 1√

2

(
|r〉+ |l〉

)
= |h〉

=⇒ |l〉 − |r〉 =
1√
2

2i
(
|v〉

)
=⇒ −i√

2

(
|l〉 − |r〉

)
= |v〉

So, in conclusion: we have that |h〉 can be either
1√
2

(
|d〉+ |a〉

)
or

1√
2

(
|r〉+ |l〉

)
, and

that |v〉 can be either
1√
2

(
|d〉 − |a〉

)
or
−i√

2

(
|l〉 − |r〉

)
.

2.1 Case 1

If only one observer is using the diagonal vs. anti-diagonal machine, without loss of
generality let that person be labeled 1 (so their photon is labeled 1 as well). Now,
we drop in the replacement rules we have in order to recast the |h〉 and |v〉 elements
in terms of |a〉, |d〉, |l〉, and |r〉. In particular, since person 1 is using the diagonal
vs. anti-diagonal machine, we want to turn |h〉1 and |v〉1 into expressions over the
diagonal vs. anti-diagonal basis; for |h〉2, |h〉3, |v〉2, and |v〉3 we will switch to the
right vs. left basis.

|ψ〉123 =
1√
2

(
|h〉1|h〉2|h〉3 + |v〉1|v〉2|v〉3

)
=

1√
2

((
1√
2

(|d〉1 + |a〉1)
)(

1√
2

(|r〉2 + |l〉2)
)(

1√
2

(|r〉3 + |l〉3)
)

+(
1√
2

(|d〉1 − |a〉1)
)(
−i√

2
(|l〉2 − |r〉2)

)(
−i√

2
(|l〉3 − |r〉3)

))
—monstrous amounts of multiplication and subsequent cancellation left to the reader—

|ψ〉123 =
1

2

(
|a〉1|r〉2|r〉3 + |d〉1|r〉2|l〉3 + |d〉1|l〉2|r〉3 + |a〉1|l〉2|l〉3

)
The takeaway from this is that the possible states for the entangled photons to be
in after all three measurements are done are as follows:

• Anti-diagonal, and the other two observers record right-hand polarization.
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• Anti-diagonal, and the other two observers both record left-hand polarization.

• Diagonal, and one observer records left-hand while the other observer records
right-hand polarization.

Using the measurement apparatus described above, note that the product of their
observations in any case will amount to −1.

2.2 Case 2

Now, we set up the situation where all observers are using the diagonal vs. anti-
diagonal measurements. In a similar process to case 1, above:

|ψ〉123 =
1√
2

(
|h〉1|h〉2|h〉3 + |v〉1|v〉2|v〉3

)
=

1√
2

((
1√
2

(|d〉1 + |a〉1)
)(

1√
2

(|d〉2 + |a〉2)
)(

1√
2

(|d〉3 + |a〉3)
)

+(
1√
2

(|d〉1 − |a〉1)
)(

1√
2

(|d〉2 − |a〉2)
)(

1√
2

(|d〉3 − |a〉3)
))

—monstrous amounts of multiplication and subsequent cancellation left to the reader—

|ψ〉123 =
1

2
(|d〉1|d〉2|d〉3 + |d〉1|a〉2|a〉3 + |a〉1|d〉2|a〉3 + |a〉1|a〉2|d〉3)

Again, this means that the possible outcomes for the system after all measurements
are finished are as follows:

• All three photons are recorded as diagonally polarized.

• One photon is recorded as diagonally polarized, and the other two are recorded
as anti-diagonally polarized.

Using the measurement apparatus described above, this means the product of the
three observations will always be 1.

To complete the proof, observe that 1 6= −1, the proof of which is too onerous to
reprint here2.

2Russell, B., 1910. ‘Principia Mathematica’
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3 A Philosophical Coda

It is important to note that the phenomenon quantum mechanics seeks to describe is
reproducible and exists outside of mathematical formalism. However, there is plenty
of room for valid objection to theories and interpretations about these phenomenon.
This theorem establishes that quantum entanglement is an example of something
that the classical physics approach can never explain fully; there may still be hid-
den variables, and there may still be elements in current experimental physics that
influence the validity of the experiments that purport to demonstrate non-local phe-
nomenon.

However, if we accept the theorem, then we are left with an astounding choice of
interpretations. For example, one could permit that phenomena can violate locality-
such as with faster-than-light information transactions (which end up amounting to
the implication that particles send information back in time to their entangled
partners). Or, one could assert that it is indeed the case that physical properties of
objects do not exist until they are “measured” in some sense. Taken to the extreme,
this is either solipsism or a similarly exotic rejection of “reality” as a concept such
as the many-worlds interpretation. Finally, one can still maintain locality and reality,
but only through the admission of some form of conspiracy: at its weakest, that the
entire universe in all of its existence is completely deterministic. This explanation is
capable of explaining any phenomena, if only in a trivial sense.

Considering that denying reality or asserting conspiracy are both intellectual
options no matter what phenomenon is under investigation, it should come as no
surprise that the more popular interpretations of quantum mechanics and the in-
sufficiency of hidden variables to explain non-locality is to assume that some minor
degree of faster-than-light interaction, or “spooky action at a distance” is indeed
possible.
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