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1 Homework Discussion: Wave Equation Stability

The crux of the proofs for FDM stability for the wave equation hinge on understanding how
to take the absolute value of a complex number: |z|2 = zz̄. With this, recognize that when
the term α+C cosϕ+iC sinϕ appears, it is describing in the complex plane a circle of radius
C centered at α + 0i or (α, 0). You can carry this geometric thread and for any particular
α determine the condition for C that will allow this circle to fit inside the unit circle on the
complex plane, or you can work it using the above-mentioned absolute value definition:

|α + C cosϕ+ iC sinϕ| = ((α + C cosϕ) + (iC sinϕ)) ((α + C cosϕ)− (iC sinϕ))

= (α + C cosϕ)2 + (C sinϕ)2

= α2 + 2αC cosϕ+ C2
(
cos2 ϕ+ sin2 ϕ

)
≤ α2 + 2αC + C2

= (α + C)2

Stability occurs when (α + C)2 ≤ 1: once again, the condition here is that C ≤ 1− α.

2 Elliptical PDE

2.1 Background

The prototypical elliptical PDE is the Poisson equation, used in various areas of physics and
engineering. The problem is, given f , solve the following equation for u:

∇2u = f (1)

Here, ∇2u represents the Laplacian of u; it is the gradient of the divergence of u, or ∇ ·∇u.

The three dimensional example is
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. Keeping with our current investigation

of FDM processes, we will analyze the two dimensional case; note that the derivatives here
are spatial derivatives for (x, y).

The FDM setup will thus require us to partition a two dimensional spatial domain; so
we will have parameters for uniform partition on x (∆x, or h), and a uniform (but not
necessarily the same size) partition on y (∆y, or k). Given a problem domain, we essentially
place a uniform net of rectangles over it; label the points at the corners of these rectangles
by uj,l.

With this setup our FDM operator Cj,l will be defined as:

Cj,luj,l =
1

h2
(uj+1,l − 2uj,l + uj−1,l) +

1

k2
(uj,l+1 − 2uj,l + uj,l−1)
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Figure 1: The 2-D FDM nodes

2.2 Convergence of FDM for elliptical PDE

Suppose the problem ∇2u = f is well-posed. It turns out that the elliptical PDE FDM will
always converge.

Theorem 2.1. The FDM for well-posed elliptical PDEs always converges.

Note: This proof was left incomplete by the end of class, and will most likely be reviewed
at the start of next class.

Proof. First, some labels: let xj and yl represent points in our partition; for now let us
assume the problem domain is the unit square [0, 1] × [0, 1] so that xj and yl represent the
coordinates of the uniform partitions in x and y respectively. Let us define the interpolated
function u(x, y) such that u(xj, yl) = uj,l, where each uj,l is a value associated with a point
in the 2-D partition. Finally, let ū = 〈uj,l〉, the vector consisting of all the values, and let
C represent the results vector Cū = 〈Cj,luj,l〉. With this interpretation of u, our theorem is
re-interpreted as:

Theorem 2.2. As (∆x,∆y)→ (0, 0), ū→ u in L∞ space.

Notation: P is the partition of the problem domain, P o represents the interior partition
elements of the problem domain, and ∂P represents the boundary of the partition.

We first need a result on where the L∞ maximum of ū will be:

Theorem 2.3. −Cj,luj,l ≤ 0 ∀j, l =⇒ max ‖ū‖∞ is in ∂P

Proof. Start with the definition of Cj,luj,l and rearrange terms:

−Cj,luj,l ≤ 0

−
(

1

h2
(uj+1,l − 2uj,l + uj−1,l) +

1

k2
(uj,l+1 − 2uj,l + uj,l−1)

)
≤ 0(

1

h2
+

1

k2

)
uj,l ≤

1

2

(
1

h2
(uj+1,l + uj−1,l)

)
+

1

2

(
1

k2
(uj,l+1 + uj,l−1)

)
(2)
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Now, suppose uj,l achieves its maximum on the interior (hence all of its neighbors will exist
and have values). Because uj,l is the maximum here, we can push the inequality more: for
example, we can use uj,l ≥ uj+1,l, uj,l ≥ uj−1,l, and uj,l ≥ uj,l−1:

1

2

(
1

h2
(uj+1,l + uj−1,l)

)
+

1

2

(
1

k2
(uj,l+1 + uj,l−1)

)
≤

1

2

(
1

h2
(uj,l + uj,l)

)
+

1

2

(
1

k2
(uj,l+1 + uj,l)

)
In conjunction with (2) we have then that:(

1

h2
+

1

k2

)
uj,l ≤

1

2

(
1

h2
(uj,l + uj,l)

)
+

1

2

(
1

k2
(uj,l+1 + uj,l)

)
(3)

�
�
��1

h2
uj,l +

�
�
�1

k2
uj,l ≤

�
�
��1

h2
uj,l +

�
�
�1

k2

(
uj,l+1 + uj,l

2

)
uj,l ≤

(
uj,l+1 + uj,l

2

)
Notice, however, that the expression on the right is the simple average of uj,l+1 and uj,l.
Since we assumed that uj,l is the maximum, this is a contradiction: thus, so long as uj,l has
all four of its neighbors (i.e., uj,l ∈ P o) it can not be the maximum. uj,l must achieve its
maximum on the boundary.

Next we need the following result relating ū and Cū:

Lemma 2.4. If the boundary entries of ū are all 0 then ‖ū‖∞ ≤
1

8
‖Cū‖∞,o

Proof. We will make use of the following construct: we will define vj,l, the parts of our
partition that correspond to a function that is zero at the middle of our problem domain
[0, 1]× [0, 1] and satisfies ∇2v = 1 on the whole problem domain:

vj,l =
1

4

(
(xj −

1

2
)2 + (yl −

1

2
)2
)

(4)

Define v̄ = 〈vj,l〉 as the vector of these values, similar to before. It is possible to check by
direct substitution that Cj,lvj,l = 1 for any j, l. Remembering that uj,l may take on negative
values, we start the next chain of deductions with the following equation:

0 ≤ Cj,luj,l + ‖Cū‖∞,o

Here the∞, o mean “in the L∞ norm (also known as the maximum value of |Cū| for all j, l),
in the interior of P”.

3 of 5



Larry Fenn Notes 5 11/11/2014

If this is the case, then we can use the fact that Cj,lvj,l = 1 to get the following inequality:

0 ≤ Cj,luj,l + ‖Cū‖∞,oCj,lvj,l (5)

Since the operation Cj,l is linear, we can rewrite (5) as:

0 ≤ Cj,l (uj,l + ‖Cū‖∞,ovj,l)

Using (2.3) we have that max ‖(ū+ ‖Cū‖∞,ov̄)‖∞ is on the boundary. Since vi,j is always
positive, this is the same as saying max ‖(ū+ ‖Cū‖∞,o)‖∞ is on the boundary.

By a similar argument, we can demonstrate that min ‖(ū− ‖Cū‖∞,o)‖∞ is on the bound-
ary.

That was just the proof of the lemma above, we still need to prove that the FDM
converges.

3 Finite Element Method

3.1 Derivation of the FEM Matrix

Given the problem ∇2f = 0 we seek to find the weak solution; that is, ϕ such that∫
∇2ϕψ = 0 for some ψ. In this situation, we will be searching for an FEM solution

which takes the form of a piecewise polynomial uh associated with some partitioning of the
problem domain and basis polynomials on the partition. The basis polynomials are the
“pieces”; each is 0 for all points in the partition except for at the point it is dual to.

Now, if uh =
∑

αpϕp then our weak solution takes the form∫
D

(
∇2
∑

αpϕp

)
ψb = 0

Note the linearity of the integral and the derivatives means we can switch the sum:

0 =
∑

αp

(∫
D

∇2ϕpψb ∀b
)

This is a linear system; thus we can represent it as K~α = 0 where every index represents an
element of the partition. So we need to learn what the entries of K will be: what, exactly,

are the

∫
D

∇2ϕpψq?

First of all, we are really summing over elements. On any particular element, there are
4 basis polynomials on each. Taking advantage of the dual property, we have that:∑

p

αp

∫
D

∇2ϕpψb ∀b =
∑
e

∫
Ee

∇2ϕe
pψ

e
q
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Here the p and q indices stand for a number 1 to 4, the four basis polynomials associated
with each element (one for each corner). Practically this means we can replace these entries
with N e

i and N e
j , where i and j are indices from 1 to 4. Now the following deduction is

applied: since

∫
Ee

∇2N e
iN

e
j =

∫
Ee

∇ · ∇N e
iN

e
j , we can apply first integration by parts and

then Stokes’ Theorem:

0 =
∑
e

∫
Ee

∇2N e
iN

e
j =

∑
e

∫
Ee

∇(∇N e
i )N e

j

=
∑
e

(∫
Ee

∇(∇ϕ)ψ −
∫
Ee

∇ϕ∇ψ
)

=
∑
e

∫
∂Ee

∂ϕ

∂n
ψ −

∑
e

∫
Ee

∇ϕ∇ψ = 0

In other words,
∑
e

∫
∂Ee

∂ϕ

∂n
ψ =

∑
e

∫
Ee

∇ϕ∇ψ. This is how we will implement our bound-

ary conditions as well: for elements on the boundary of the problem domain, the
∂ϕ

∂n
term

will correspond to our fluid flows through the boundary of the problem domain.

3.2 Homework or: How I Learned to Stop Worrying and Love the
FEM

Given the channel and nodes data, the first step will be to load the elements in one by one
into your program. The very first task the program should do is to read each element in
the file and draw it, thus testing the correct implementation of element record reading and
element-node lookup functions. Once the underlying elements have been drawn, the next
step is to begin coding the basis polynomials. Each basis polynomial should take as input
the four coordinates corresponding to the bottom left and upper right coordinates of the
element: (α, β) and (γ, δ) should be variables in the basis polynomial used to construct its
dual relationship. On top of that, each basis polynomial accepts as variables (x, y). So a

given basis polynomial is one such as N1(α, β, γ, δ, x, y) =
(γ − x)

(γ − α)

(δ − y)

(δ − β)
.

After that, the next step is to initialize a square matrix whose size is given by the number
of nodes: this will carry our approximation for uh for every node in the partition. Call it
K; the task will be to loop over all elements in the partition scheme and load into K the

appropriate integrals given in the derivation: each integral

∫
Ee

∇ϕ∇ψ will go into K, where

ϕ and ψ are each one of the four basis polynomials (so there will be sixteen entries total per
element).

The remaining steps have yet to be expanded on.
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