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1 2-D Heat Equation Stability

To analyze the stability conditions for the 2-D heat equation, observe that now there are
two directions- the x direction and the y direction. As a result, we will now effectively be
interpolating using the discrete Fourier transform in two directions: where there was in the
past just the inner product σ(f, g), there are now two inner products:

σx(f, g) =
Mx−1∑

0

f(xi) ¯g(xi), σy(f, g) =

My−1∑
0

f(yi) ¯g(y + i) (1)

Recall that a function defined only over a partition {x0, x1, ..., xMx−1} is effectively a vector
of the same length as the partition. As a result, we can interpret f and g as inhabiting
vector spaces: Vx and Vy; this is just a rethinking of “function” over a discrete partition.

This suggests to us the proper way to make use of σx and σy: since our 2-D partition
is in some sense parts x and parts y, we can think of the function partitioning x and y as
inhabiting the vector space Vx ⊗ Vy({x0, ..., xMx−1} × {y0, ..., yMy−1}); the inner product of
this space will be the natural construction σx ⊗ σy. The basis elements of this function will
be all elements of the form eijx ⊗ eikx.

The book contains the remainder of the proof of stability, using this as the foundation: it
turns out to be in content the same as with the 1-D, with the tensor product here facilitating
the notation.

2 Ch. 7: The Lax-Richtmyer Theorem

2.1 Premises

First we will need to clearly expand on the premises of this quite significant theorem. The
theorem itself states that for any consistent finite difference method for a well-posed linear
initial value problem that the method is consistent if and only if it is stable. In greater detail:

A single-step process is one in which we only make use of un to determine un+1- as we
are used to in the setup un+1 = Aun.

For now, assume we are working only over 1 spatial dimension, with constant coefficients
(this is noted to be a rather weak set of assumptions, which give away just how old this
theorem is- contemporary problems in numerical analysis are much trickier).

Suppose that our solutions will come from a dense subspace V0 of a Banach space V (this
turns out to be a rather easy strengthening of the hypothesis- rather than assume our solu-
tions will be drawn from a Banach space, we make use of the knowledge that every normed
linear space is a dense subspace of a Banach space). Bounded operators on the dense sub-
space V0 extend to V with the same norm (this is a common result- consult [Atkinson, Han]).
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Our differential equation is a linear partial differential equation; that is, it has the fol-
lowing form:

du

dt
= L(u); u : [0, T ]→ V0; u(0) = u0 (2)

Here, L are the spatial derivatives as a linear operator with constant coefficients (this is the
typical statement of an initial value problem in differential equations).

Our problem is well-posed if the differential equation has a unique solution that varies
continuously with initial values.

2.2 Exposition

A differential equation solution can be characterized by defining a map S : [0, T ]→ V0 where
S(t) is an operator on V0 (so it has to have the property u(t) = S(t)u0, and S(t1 + t2) =
S(t1)S(t2)).

The finite difference method in particular gives rise to the operator Rk on V0; for it
to match the form above, we will interpret the single-step FDM as Rk(u0) = S(k)u0 and
Rm

k (u0) = S(mk)u0- here Rk is taking the place of those state change matrices we have been
working with.

The problem, and it’s quite concrete, is that S is unknown. Indeed, S represents the
solution to the problem- so as far as we are concerned, it is assumed to be out of our grasp
(else, why would we be approximating the solution?). If we can define RK such that ‖Rk‖
is uniformly bounded and show convergence to S in the spatial partition then we will have
shown the Lax-Richtmyer Theorem. For now, without showing it, we will show how this
remarkable theorem is used.

2.3 Uses

We can bring this theorem to bear for any operator such that ‖Rk‖ < c <∞∀k > N , some
N . In the situation with the FDM we have seen already that Rk is the exact same as the
state change matrix un+1 = Cku

n; for the finite element method it will turn out to be the
same as I + kK = Rk.
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