
Larry Fenn Sept. 16, 2014

1 Closing Remarks on Fourier Transforms

If f is a function such that the following are true:

‖f‖1 =

∫ ∞
−∞
|f(x)| dx <∞, ‖f‖2 =

(∫ ∞
−∞
|f(x)|2 dx

) 1
2

<∞

then we say f is both a member of the L1 and L2 spaces; f ∈ L1
⋂
L2. The Fourier transform

is defined for functions f in both these spaces by the formula

f̂(k) =

∫ ∞
−∞

f(x)e−2πixkdx

The amazing thing about the transform is that it is an isometry- it preserves “lengths”.
In this context it means that a problem can be transformed, solved in a (hopefully) easier
context, and then transformed back to give us a solution.

2 Stability

Suppose a time domain t ∈ [0, T] with some partition, a space domain with some partition, a
state vector un that carries the information for the given partition of space and time, and the
state change un+1 = Ch,ku

n where Ch,k is the operator with mesh parameters h and k (h is
the space partition size, k is the time partition size), we say that the process is stable if ‖Cn

h,k‖
is bounded independently of n (the norm here is the Operator norm: ‖A‖ = sup

‖v‖=1

‖Av‖). In

fact, various norms dominate the operator norm: the elementwise matrix norm, for example,
dominates the operator norm. Thus if we can show the elementwise norm of the matrix is
bounded independent of n, the operator norm must therefore be bounded.

The next class of stability is Von Neumann stable or for short Neumann stable. A method

is Von Neumann stable if
‖un+1‖
‖un‖

≤ 1. It can be shown that stable =⇒ Von Neumann

stable- replace the un+1 with Ch,ku
n in the numerator and apply Cauchy-Schwarz. The con-

verse is true in the case that Ch,k is a symmetric matrix.

The spectral radius of a matrix A is ρ(A) = max(|λ|) for all eigenvalues λ of A. In the
case that A is symmetric, the spectral radius ρ(A) is exactly the operator norm ‖A‖. In the
case that A is not symmetric, ρ(A) is a lower bound for ‖A‖. Thus in any particular method
we can examine the eigenvalues of Ch,k along with if its symmetric to attempt to determine
stability.

1 of 3

Larry Fenn Sept. 16, 2014

3 Discrete Fourier Transform

Let [x0, x1, ..., xN] be a uniform partition of [0, 2π] (hence xi = i
2π

N
), let f, g : [x0, x1, ..., xN+1]→

C be functions mapping the partition to C (we can think of them as n-tuples of complex

numbers), then σ(f, g) =
N−1∑
0

f(xi)g(xi) defines a positive definite Hermitian form.

Lemma 3.1. σ(eijx, eikx) =

{
N if

j − k
N
∈ Z

0 otherwise

Proof. For clarity let I be the imaginary unit. σ(eIjx, eIkx) =
N−1∑
i=0

eIjxie−Ikxi =
∑
i

eI(j−k)xi .

Rewrite it using xi = i
2π

N
(thanks to the uniform partition) to arrive at

∑
i

[(
e2πI
) j−k

N

]i
.

Applying the identity e2πI = 1 gives us
∑
i

(
1

j−k
N

)i
. If

j − k
N

were an integer, then we would

simply have
∑
i

1 which is N . If not, then we would have roots of unity- we already know,

however, that summing all of the Nth roots of unity yields 0.

Thus the Hermitian form σ has an orthogonal set of elements {eikx} for a certain set of
k. We will see in a second how to properly choose the numbers k; we will take advantage of
this orthogonal property to create the discrete Fourier transform:

M1−1∑
k=−M0

Cke
ikx

M0 = M1 =
N

2
if N is even, M0 = M1 =

N − 1

2
if N is odd, Ck =

σ(f, eikx)

N
. Interpret

this as projecting f onto the eikx “vector”; since all of the eikx are orthogonal, we are de-
composing f into different scaled components of the form eikx (similarly to how we turn an
arbitrary vector in Rn into the coordinate n-tuple {x1, x2, ..., xn}).

In a geometric sense this is akin to using trapezoids as approximations to f and then
applying the transform.

Parseval’s theorem holds in the discrete case: if f is given by (f(x0), f(x2), ..., f(xN)

samples of f at xi, then ‖f‖ = ‖f‖σ =
[
σ (f, f)

1
2

]
. Note that this suggests an application

of the discrete Fourier transform: recall that Neumann stability is given by ‖Cn+1
i ‖ ≤ ‖Cn

i ‖.
Applying Parseval’s theorem suggests that we can apply a transformation and use the ‖ · ‖σ
norm to make conclusions about stability.

2 of 3

Larry Fenn Sept. 16, 2014

4 Truncation & the Lax Equivalence Theorem

The fundamental problem with any approach for solving something numerically is quite in-
tutive: how do we know if we are approaching the “right answer” without actually knowing
the right answer? Any numerical method will give us a sequence of progressively improving
estimates; how do we know that the sequence converges, and even more important, that
it converges to the true solution? For the finite difference method, we have the following
powerful result:

Let Cn
h,k represent our finite difference method operator. Start with the error en =

u(tn, ·)−Cun−1; where u(tn, ·) is our stand-in for the “actual” answer at time tn and with ·
representing various other parameters; let Cun−1 represent the answer our numerical method
gives us given the state vector un−1 one time-step prior to tn.

en = u(tn, ·)− Cu(tn−1, ·) + Cu(tn−1, ·)− Cun−1

= u(tn, ·)− Cu(tn−1,)̇ + C
(
u(tn−1, ·)− un−1

)
The left two terms, u(tn, ·)− Cu(tn−, ·), reference only the “true” solution and how the nu-
merical method C is “off” by when given the correct solution as input. We call this term
truncation error ; it is the error induced solely by C, and not by anything else (importantly,
it is independent of tn or any other parameters!).

The right two terms are rewritten as C (en−1). So our original error, en, is broken down
as follows:

en = truncation error + Cen−1 = truncation + C(truncation + Cen−2)

Note that this recurrence relation will therefore apply all the way down; Cen−1 is similarly
broken down into truncation error and C2en−2, and so on. The term en can be thought of as
fully breaking down into two parts: a geometric sum truncation · (1 +C + ...+Cn−1 and our
numerical error Cne0 If ‖Cn‖ is bounded, then we have that the Cne0 term will go to 0 as
we let n go to ∞. On the other hand, for the geometric sum component to go to 0 we have
the requirement that the truncation term goes to zero as we improve our approximations
(in other words, if h and k go to zero, truncation should go to zero). This requirement is
in fact known as consistency ; it means that a numerical method approximates the partial
differential equation correctly. Thus, in order to have en go to zero as n goes to ∞, it is
required that C both be bounded and consistent. Recall that C being bounded for all n is
equivalent to C being stable. This is the Lax-Richtmyer theorem, also known as the Lax
Equivalence theorem (named after Peter Lax and Robert D. Richtmyer).

Theorem 4.1. (Lax Equivalence Theorem)
If C is a consistent finite difference method, then C converges if and only if C is stable.

#

3 of 3

