
Larry Fenn Sept. 9, 2014

1 Multi-Index Notation

If we have n distinct variables x1, x2, ... and with them n distinct exponents α1, α2, ..., we
can shorthand these polynomials:

Let X = (x1, x2, x3...) represent all the variables; let α = (α1, α2, ...) represent the expo-
nents in a list. The length n multi-index is

Xα :=
∏

xαi
i

Here ∀iαi ≥ 0. Thus the generic n dimensional polynomial can be given as∑
|α|≤m

aαX
α

This is presented primarily as a shorthand for personal use to simplify writing these compli-
cated polynomials.

2 Differentiation as a Bounded Operator

Consider the space of all polynomials over [0, 1] : P [0, 1] as a normed linear space with norm
‖p‖∞ = sup

x∈[0,1]
|p(x)|. Define D as the derivative; we have already seen that D is a linear

operator on P [0, 1]. Is D bounded?

D is not a bounded operator: consider ‖Dxn‖∞ = n‖xn−1‖. There is no value M < ∞
such that ‖Dxn‖∞ ≤M‖xn−1‖ (since, if x = 1, then ‖Dxn‖∞ = n which has no bound.

3 Polynomial Interpolation Again

Instead of Vandermonde matrices, consider interpolation using the Lagrange basis; in other
words, functions li(x) such that li(xj) = 1 if j = i and li(xj) = 0 if j 6= i. With such a basis
the polynomial can be expressed as

n∑
k=0

αili(x)

Assuming some partition x0, x1, ..., we will define the Newton Form of this expression as
being of the form

n∑
k=0

ck

k∏
j=0

(x− xj)

To see why this can be a viable form of the polynomial, the first few products
∏

(x− xj)
are given:

•
∏

0 = 1

1 of 3

Larry Fenn Sept. 9, 2014

•
∏

1 = x− x0

•
∏

2 = (x− x0)(x− x1)

Note that this implies
∏

i(x) = 0 if x = x0, x1, ..., xi−1. The ck are various constant factors
which we will derive next.

In order for the Newton Form to agree with the polynomial we have from the Lagrange
basis approach, we will invent new notation for ck. From the above thought on

∏
i, note that

ck will really depend on the values x0, x1, x2, ..., xk and f . In that vein we define divided-
differences notation as

ck = [x0, ..., xk]f

To interpret this: [x0]f = f(x0) first. Now, f(x1) = c0
∏

0 +c1
∏

1 = c0 + c1(x− x0)|x=x1 ;
with c0 = [x0]f = f(x0) we can rewrite this as f(x1) = f(x0) + c1(x1− x0) which leads us to

the conclusion c1 =
f(x1)− f(x0)

x1 − x0
And so on... this quickly gets out of hand, but let’s try to keep some facts straight:

[x0, ..., xk]f will be the coefficient of xn in our final polynomial: this argument proceeds by
both induction and also by arguing from degree terms- using the Lagrange basis we have
one expression for xn’s coefficient which must therefore be the same as what we’ve called
[x0, ..., xk]f . The full details of this argument are highly algebraic in nature and are fully
exposed in the text. The next divided difference can be determined either by the technique
above or by employing the recursive formula for divided differences:

• [x0, x1] =
[x1]− [x0]

x1 − x0

• [x0, x1, x2] =
[x1, x2]− [x1, x0]

x2 − x0

• [x0, x1, x2, x3] =
[x1, x2, x3]− [x0, x1, x2]

x3 − x0
Another way to think of these is as discrete approximations to the derivatives: [x0] = f(x0)

is the 0th derivative; [x0, x1] =
f(x1)− f(x0)

x1 − x0
is the 1st derivative approximated, and so on.

3.1 Multivariable Interpolation

Extending the divided-differences formula to multivariable polynomial interpolation: again,
let [x0][y0]f = f(x0, y0). From here we build up by following the mold already set: [x0, x1][y0]f =
f(x1, y0)− f(x0, y0)

x1 − x0
, [x0][y0, y1]f =

f(x0, y1)− f(x0, y0)

y1 − y0
, and so on.

2 of 3

Larry Fenn Sept. 9, 2014

4 Fourier Transformation

If f ∈ L1(R)
⋂
L2(R) then we can define the Fourier transform of f by the following:

f̂(k) =

∫ ∞
−∞

f(x)e−ikx dx

The effect of the transform is to take f from its original domain to a new domain: the

frequency domain. There is also defined a function g(x) =
1

2π

∫∞
−∞f̂(k)eikx dk which has

the following effect: f = g almost everywhere. This is the subject of the Inversion theorem,
which establishes that the Fourier transform is a reversible transformation: f can be trans-
formed into f̂ , which can then be transformed back into g.

A few other key theorems: Plancherel’s theorem states that the Fourier transform is a
linear map; additionally, ‖f̂‖2 = ‖f‖ so it is an isometry. This has the effect of saying that
the space of transformed functions and the space of functions are identical; that is, we need
not fear losing any meaningful information by applying the Fourier transform.

There’s the convolution theorem: first, we define the convolution of f and g as (g∗f)(x) =∫∞
−∞f(x)g(x− x′) dx′. The theorem states that ĝ(k)f̂(k) = ˆg(x) ∗ f(x).

There’s this identity: f̂ ′(k) = ikf̂(k). This is used in a concrete instance in the solution
to the heat equation.

4.1 Solving 1-D Heat Equation

The underlying differential equation is

f(t, x) =
∂f

∂t
= α

∂2f

∂x2

Applying a Fourier transform with respect to x gives us that

∂

∂t
f̂(t, k) = −αk2f̂(t, k)

We can solve this differential equation in t in terms of f̂ : a function whose derivative is a
multiple of itself is the exponential. Thus

f̂(t, k) = e−αk
2tf0(k)

So from here we transform back: the solution (almost everywhere) is going to be

1

2π

∫ ∞
−∞

e−αk
2tf0(k)eiktdk

With appropriate assumptions on initial conditions we have produced the family of solutions
to the 1-D heat equation.

3 of 3

