1 Exterior Products and Determinants

Let $\bigwedge V$ be the exterior product space as before with basis $\{v_i\}$. We showed already that for

any two vectors we can rewrite the product: $\sum \alpha_{1j} v_j \wedge \sum \alpha_{2k} v_k = \sum_{\sigma \in S_n} (-1)^{\sigma} \prod_{i \in I}^n \alpha_{i\sigma(i)} (v_1 \wedge \dots \wedge v_n).$ Notice that if we indexed the coefficients and thought of them as matrix entries in $A = [\alpha_{ij}]$

Notice that if we indexed the coefficients and thought of them as matrix entries in $A = [\alpha_{ij}]$ that this is precisely the definition of the determinate of det A. Let's explore the implications of this connection.

If we have a linear map $L: V \to V$ with L(v) = u and matrix representation A = [L]. We say that there is a map L^{\wedge} induced by $L: L^{\wedge} \bigwedge^{n} V \to \bigwedge^{n} V$ with $L^{\wedge}(v_{1} \wedge \cdots \wedge v_{n}) = (Lv_{1} \wedge Lv_{2} \wedge \cdots \wedge Lv_{n})$. By working with this definition, it is easily shown that $u_{1} \wedge \cdots \wedge u_{n} = \det A(v_{1} \wedge \cdots \wedge v_{n})$. Thus we can identify [L] = A and $[L^{\wedge}] = \det A$.

1.1 Determinant Rules

Let B = [N] be another map and matrix representation.

Claim: det $B \det A = \det BA$

Proof. Call A = [NL]; by our definition of determinant $[(NL)^{\wedge}] = \det BA$. On the one hand, [NL] = [N] [L]. $[(N \circ L)^{\wedge}] \cong (NL)^{\wedge} (v_1 \wedge \cdots \wedge v_n) = (NLv_1 \wedge \cdots \wedge NLv_n)$. At this point we make use of the N^{\wedge} definition: this equals $N^{\wedge} (Lv_1 \wedge \cdots \wedge Lv_n)$; similarly, we can pull out L^{\wedge} to get $N^{\wedge}L^{\wedge} (v_1 \wedge \cdots \wedge v_n)$. Thus $(N \circ L)^{\wedge} = N^{\wedge}L^{\wedge}$; so det $BA = [(NL)^{\wedge}] = [N^{\wedge}L^{\wedge}] = [N^{\wedge}] [L^{\wedge}] = \det B \det A$.

As a corollary, note that $(N \circ L)^{\wedge} \in \operatorname{Hom} \bigwedge^{n} V$.

Claim: det I = 1

Proof. $I^{\wedge}(v_1 \wedge \cdots \wedge v_n) = v_1 \wedge \cdots \wedge v_n = 1 \cdot v_1 \wedge \cdots \wedge v_n$. Thus det $I = [I^{\wedge}] = [1] = 1$ where we identify the 1 by 1 matrix with a constant.

Claim: det $A^{-1} = (\det A)^{-1}$

Proof. $1 = \det I = \det AA^{-1} = \det A \det A^{-1}$. Hence $\det A^{-1} = (\det A)^{-1}$ by division on constants.

Alternatively, notice carefully what we have done by defining the determinant in this way: if we take these matricies to be elements of the general linear group $GL(\mathbb{R})$ then the relationship $[L] = A \implies [L^{\wedge}] = \det A$ is in fact a group homomorphism. Now the properties become clear: identity and cancellation are as given by group properties.

Claim: det $A \neq 0 \iff A$ nonsingular.

Proof. We have already shown the other case by the result on det A^{-1} . Now, the \implies case: if L is a singular map then this is equivalent to the basis elements $\{v_i\}$ mapping under L to a dependent set $\{u_i\}$. If so, then $L^{\wedge}(v_1, ..., v_n) = 0$ (see our work earlier when defining the exterior product; the exterior product of a dependent set is zero). Hence $[L^{\wedge}] = A = [0]$. \Box

1.2 Exterior Product & Elementary Row Operations

We can reinterpret the elementary matrix row operations now. Type I: swapping rows (identify with the transposition (ij):

$$L^{\wedge}(v_1, ..., v_n) = (Lv_1, ..., Lv_n)$$
$$= v_{\tau(1)} \wedge \cdots \wedge v_{\tau(n)}$$
$$= -(v_1 \wedge \cdots \wedge v_n)$$

Hence $[L^{\wedge}] = -1$; thus the type I operation changes the sign of the determinant.

Type II: multiplication of a row by c constant:

$$L^{\wedge}(v_1, ..., v_n) = (v_1 \wedge \dots \wedge cv_i \wedge \dots \wedge v_n)$$
$$= c(v_1 \wedge \dots \wedge v_n)$$

Thus $[L^{\wedge}] = c$; so the type II operation changes the determinant by multiplication by c. Type III: linear combination of rows (ci + j)

$$L^{\wedge} (v_1 \wedge \dots \wedge cv_i + v_j \text{ in the } j\text{th position } \wedge \dots v_n)$$

= $(v_1 \wedge \dots \wedge v_i \text{ in the } j\text{th position } \wedge \dots \wedge v_n) + (v_1 \wedge \dots \wedge v_n)$
= $0 + (v_1 \wedge \dots \wedge v_n)$

Hence $[L^{\wedge}] = 1$. Hence the linear combination of rows does not change the determinants.