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1 Exterior Product

1.1 Definition

Let V be a vector space; @V =V®VE®---®V be the tensor product of m many
copies. At this point we will construct a new space by taking out the antisymmetric tensors.
Call W = Span {all tensors of the form v ® -+ Q@ vy, — v,y ® -+ ® UT(m)} where 7(i) is an
arbitrary transposition of two elements (remember that we can build up permutation by

m

composition of transpositions). We will denote /\ V' by ® V /W; elements take the form
of equivalence classes 11 @ Vo ® -+ @v, + W = v1 A vy A - -+ A v,. Sometimes we denote this
space as the Grassman Space; the algebra on these elements is called the Grassman Algebra
or the Ezxterior Algebra. One of its uses can be found in permitting differential geometry to
work- the algebra of differential forms is the exterior algebra. In a concrete geometric sense:
if we have two dimensional vectors, there is the two dimensional vector space they create
(assuming they are not collinear). Additionally, for any two vectors in this two dimensional
vector space, there can be defined the parallelogram (one vector multiplied along another)
which will have properties such as area, orientation, facing. The exterior product of the two
dimensional vector space is hence the space of all possible parallelograms.

1.2 Basic Properties

Claim: If v; = vj then vy Ava A - AV, =0

Proof. Tf we use the transposition 7 = (ij) observe that this has signature of —1 (single
transpositions have signature —1; arbitrary permutations have signature (—1)" where n
is the number of required transpositions). It is not too hard to check, by nature of the
construction, that for any permutation o that the permutation Us(1) A Ug(2) A *** A Ug(m) =
sgn(o)(vy Avy A+ - vy); this naturally implies that if the element in the ith position and in the
Jth position then we have that vy Ava A+ AV A AV A- - AV = Vr(1) AUz ) A - AUZGH A A
Ur() A" AVtqu(n) = —UVIAVIA - AUJA- AV A- AUy = —ULAUZA AV A- = AUj A+ AUy,
The first object is equal to itself times negative 1: this can only happen if the object as a
whole is equal to a 0-object (possibly a zero vector of some length). It will turn out to be a
dimension 1 0 vector- what we will associate with just the number 0. O]

Claim: If {vq,...,v,} are a dependent set, then v; A vg A -+ A v, =0,

Proof. By dependence we can assume without loss of generality that v, = Z a;v;. Now:

n—1

rewrite the wedge product as vy A -+ Av,_1 A Z a,v;; if we go back to the definition of this

wedge product we see that it exhibits multlhnearlty owing to its tensor product construction.
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n—1
Hence the wedge product vy Avg A+ A, = 2 a; (V1 Avg Ao A1 A ;). Observe that
i=1
for any ¢ the wedge product in that sum must equal zero: since for any 7 that wedge product
contains two copies of that element. Hence this whole sum is zero; vy Avo A -+ Av, =0. [

Claim: If dimV = m and n > m, then /\ V=0

Proof. 1f you take the wedge products of n spaces but they each only have dimension m
with n > m then it is impossible to choose an independent set {v;,...,v,}. Thus the wedge
product must equal zero. O

1.3 Dimension of General Exterior Product

We can actually make a general statement on the dimension of the exterior product:

Claim: 1f dimV = m then dim /\ V = <m>
n

Proof. Let {v;,...,v,} be a basis for V; thus we’ll consider the wedge product of arbitrary

vectors uj; A us A -+ A u, where u; = > a;;v; and attempt to construct a basis for /\ V.
By doing show we can count the number of basis elements, and determine the dimension.
The wedge product of {u;} is ug A ug A -+ AUy = D 0905 A D QU A - A D 0. We
want to be able to operate multilinearity, but in order to reduce this down into a sum with
a vy AUy A AU, term in it we’ll need to do some analysis on the arbitrary nature of the
ordering of these terms. Let I'(n) denote all possible sequences of length n of m letters.

With this set defined, notice that we can formulate a basis for ® V.
{0y01) ® - ® Vym) = V'|[Vy € [(n)} is a basis for (X)V

n
Remember that dim@V = m" for dimV = m. Now: if we return to our product
DU A D QU A e A D Qv we will use multilinearity to try to collect all of the
terms. First, we can gather all of the a terms together: to see how this is done, consider the
simple case of n = 2:

n = 2 case:
m

m
Z Q1;0; N Z QU5
i=1 j=1

Immediately we can see cancellation will happen between some of these terms in this
product. For example, whenever ¢ = j we have a previous result that says their wedge
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product will equal zero (since v; A v; = 0). Moreover, there will be cancellation between

matching pairs of v; A v; and v; A v;.
m m

For the ¢ = 1 term: ajiv; A Zocijj = 20411042]'(111 A v;). This follows from the
j=1 j=1
multilinearity of our construction. For ¢ = 2 we will have, similarly, Z;n:l Q12025 (V2 A V).
And so on, for we will have m of these terms and they will all be summed together. Hence
we vyr}ll 77}Fwe a double sum:

Z 2 a1;00;(v; A vj). When ¢ = j the term in the sum is zero because of v; A v; = 0; the
i=1j=1
other terms will collapse together (since v; A v; = —v; A v;), and we are left with the sum
Zafiagj (vi A vj) where the a terms have changed owing to the collection of ¢ > j terms.
b
1<j
Let’s push this back up to the general case now that we see what’s happening: the wedge
product of sums turns into a multiple sum with the o terms entering a product.

So if we have a general n length wedge product, we can still factor out the first entry:
m m m
Z QLU A A Zam-vi = Z aj [viA-- A Z a,iv; | (it’s a bit confusing, but the is are
i=1 i=1 j=1 i=1

all indexing separate things. Now we continue factoring out alphas from the wedge product,
just like as in the two product case: = Z afjagk (vj AVE A A ZOém'Uz‘>~ Be aware that
j.k
i<k
since each element of this wedge product is going over all elements of the basis of V' that we
do not have any explicit ordering of these factored-out wedge products; in other words, v,
and v have no relationship between them yet. If we continue with this product, factoring
out terms, we see that:

e All the scalar terms are going to end up outside the wedge product
e The sum becomes a multiple sum of n seperate indices
e The wedge product inside the multiple sum is arbitrarily arranged

If we piece these facts together we conclude that we can express the whole thing in terms of
a sum over v € ['(n) such that the sequence is increasing (remember the two product case
where we showed that the multiple sum ends up being 2; this carries over into multiple
=
j]<k
indices); denote the set of increasing sequences of length n over m letters as A(n):

D, (v A A v)
yeA(n)

Thus for n arbitrary vectors {u;} we can express them as the sum ZWE Am) O (vﬂ,(l) NEREIA vv(n);
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the conclusion is that

Z (vy(l) NEREIN vv(n)) must span /\ |4

veA(n)

n

Finally, since we have a spanning set for the space /\ V', we can ask: what dimension is
n

n
/\ V? Looking at what we have above, we conclude that dim/\ V' is the same as the size

of A(n). If you recall your combinatorics, this is precisely (m) H
n

1.4 Universal Property

Claim: For an exterior product generated on n vector spaces /\" V; # 0, the resultant space
satisfies the universal property.

Proof. We must show that for any n-linear map ¢(v) (that is, a mapping in n separate
variables) that there exists linear maps L and a unique L” such that L"(L(v)) = ¢(v).
To do so, we will use the following diagram as a framework: We will make use of the

n V/n n n
XV (>< V) RV //\v

-

Figure 1: Relations between spaces and the exterior product

universality of the tensor product. Consider the following map: S : X V — @ V' defined
by S(v1, 02, 00) = Y (17 P(0)(01®-+-®v,) whete P(o) (1@ +-@vn) = 09y - Bty

oeSy
is a permutation of tensors. We wish to show that this fulfills the requirements we want

for an antisymmetric n-linear map. For an arbitrary transposition of inputs, 7: evaluate
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S(UT(l), ceey ’UT(n)):

S(UT(1)7 s UT(TL)) = Z (_1)0P(0—) (UT(l) ®-Q UT(”))

o€ESy
= Y (F1)P(o7) (10 © - © vp)
o€Sy
— Z (—1)”71P (07_1) T ® - @)
o€eS,
= 2 (CD)(=DPO) (1@ @)
oSy
== 2 (=1)PO) (11 ®- - ®uy)
€S
Hence the function S is antisymmetric, and is the linear map we are looking for. m
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