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1 Exterior Product

1.1 Definition

Let V be a vector space;
m
â

V “ V b V b ¨ ¨ ¨ b V be the tensor product of m many
copies. At this point we will construct a new space by taking out the antisymmetric tensors.
Call W “ Span

 

all tensors of the form v1 b ¨ ¨ ¨ b vm ´ vτp1q b ¨ ¨ ¨ b vτpmq
(

where τpiq is an
arbitrary transposition of two elements (remember that we can build up permutation by

composition of transpositions). We will denote
m
ľ

V by
m
â

V {W ; elements take the form
of equivalence classes v1 b v2 b ¨ ¨ ¨ b vn `W “ v1 ^ v2 ^ ¨ ¨ ¨ ^ vn. Sometimes we denote this
space as the Grassman Space; the algebra on these elements is called the Grassman Algebra
or the Exterior Algebra. One of its uses can be found in permitting differential geometry to
work- the algebra of differential forms is the exterior algebra. In a concrete geometric sense:
if we have two dimensional vectors, there is the two dimensional vector space they create
(assuming they are not collinear). Additionally, for any two vectors in this two dimensional
vector space, there can be defined the parallelogram (one vector multiplied along another)
which will have properties such as area, orientation, facing. The exterior product of the two
dimensional vector space is hence the space of all possible parallelograms.

1.2 Basic Properties

Claim: If vi “ vj then v1 ^ v2 ^ ¨ ¨ ¨ ^ vm “ 0

Proof. If we use the transposition τ “ pijq observe that this has signature of ´1 (single
transpositions have signature ´1; arbitrary permutations have signature p´1qn where n
is the number of required transpositions). It is not too hard to check, by nature of the
construction, that for any permutation σ that the permutation vσp1q ^ vσp2q ^ ¨ ¨ ¨ ^ vσpmq “
sgnpσqpv1^v2^¨ ¨ ¨ vnq; this naturally implies that if the element in the ith position and in the
jth position then we have that v1^v2^¨ ¨ ¨^vi^¨ ¨ ¨^vj^¨ ¨ ¨^vn “ vτp1q^vτp2q^¨ ¨ ¨^vτpiq^¨ ¨ ¨^
vτpjq^¨ ¨ ¨^vtaupnq “ ´v1^v2^¨ ¨ ¨^vj^¨ ¨ ¨^vi^¨ ¨ ¨^vn “ ´v1^v2^¨ ¨ ¨^vi^¨ ¨ ¨^vj^¨ ¨ ¨^vn.
The first object is equal to itself times negative 1: this can only happen if the object as a
whole is equal to a 0-object (possibly a zero vector of some length). It will turn out to be a
dimension 1 0 vector- what we will associate with just the number 0.

Claim: If tv1, ..., vnu are a dependent set, then v1 ^ v2 ^ ¨ ¨ ¨ ^ vn “ 0.

Proof. By dependence we can assume without loss of generality that vn “
n´1
ÿ

i“1

αivi. Now:

rewrite the wedge product as v1^ ¨ ¨ ¨^ vn´1^

n´1
ÿ

i“1

αivi; if we go back to the definition of this

wedge product we see that it exhibits multilinearity owing to its tensor product construction.
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Hence the wedge product v1^v2^¨ ¨ ¨^vn “
n´1
ÿ

i“1

αi pv1 ^ v2 ^ ¨ ¨ ¨ ^ vn´1 ^ viq. Observe that

for any i the wedge product in that sum must equal zero: since for any i that wedge product
contains two copies of that element. Hence this whole sum is zero; v1^v2^¨ ¨ ¨^vn “ 0.

Claim: If dimV “ m and n ą m, then
n
ľ

V “ 0

Proof. If you take the wedge products of n spaces but they each only have dimension m
with n ą m then it is impossible to choose an independent set tvi, ..., vnu. Thus the wedge
product must equal zero.

1.3 Dimension of General Exterior Product

We can actually make a general statement on the dimension of the exterior product:

Claim: If dimV “ m then dim
n
ľ

V “

ˆ

m

n

˙

.

Proof. Let tvi, ..., vnu be a basis for V ; thus we’ll consider the wedge product of arbitrary

vectors u1 ^ u2 ^ ¨ ¨ ¨ ^ un where ui “
ř

αijvj and attempt to construct a basis for
n
ľ

V .
By doing show we can count the number of basis elements, and determine the dimension.
The wedge product of tuiu is u1 ^ u2 ^ ¨ ¨ ¨ ^ un “

ř

α1jvj ^
ř

α2jvj ^ ¨ ¨ ¨ ^
ř

αnjvj. We
want to be able to operate multilinearity, but in order to reduce this down into a sum with
a v1 ^ v2 ^ ¨ ¨ ¨ ^ vn term in it we’ll need to do some analysis on the arbitrary nature of the
ordering of these terms. Let Γpnq denote all possible sequences of length n of m letters.

With this set defined, notice that we can formulate a basis for
n
â

V :

 

vγp1q b ¨ ¨ ¨ b vγpmq “ vγ|@γ P Γpnq
(

is a basis for
n
â

V

Remember that dim
n
â

V “ mn for dimV “ m. Now: if we return to our product
ř

α1jvj ^
ř

α2jvj ^ ¨ ¨ ¨ ^
ř

αnjvj we will use multilinearity to try to collect all of the
terms. First, we can gather all of the α terms together: to see how this is done, consider the
simple case of n “ 2:

n “ 2 case:
m
ÿ

i“1

α1ivi ^
m
ÿ

j“1

α2jvj

Immediately we can see cancellation will happen between some of these terms in this
product. For example, whenever i “ j we have a previous result that says their wedge
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product will equal zero (since vi ^ vi “ 0). Moreover, there will be cancellation between
matching pairs of vi ^ vj and vj ^ vi.

For the i “ 1 term: α11v1 ^

m
ÿ

j“1

α2jvj “
m
ÿ

j“1

α11α2jpv1 ^ vjq. This follows from the

multilinearity of our construction. For i “ 2 we will have, similarly,
řm
j“1 α12α2jpv2 ^ vjq.

And so on, for we will have m of these terms and they will all be summed together. Hence
we will have a double sum:

m
ÿ

i“1

m
ÿ

j“1

α1iα2jpvi^ vjq. When i “ j the term in the sum is zero because of vi^ vi “ 0; the

other terms will collapse together (since vi ^ vj “ ´vj ^ vi), and we are left with the sum
ÿ

i,j
iăj

α^1iα
^
2jpvi ^ vjq where the α terms have changed owing to the collection of i ą j terms.

Let’s push this back up to the general case now that we see what’s happening: the wedge
product of sums turns into a multiple sum with the α terms entering a product.

So if we have a general n length wedge product, we can still factor out the first entry:
m
ÿ

i“1

α1ivi ^ ¨ ¨ ¨ ^
ÿ

i“1

αnivi “
m
ÿ

j“1

α1j

˜

v1 ^ ¨ ¨ ¨ ^

m
ÿ

i“1

αnivi

¸

(it’s a bit confusing, but the is are

all indexing separate things. Now we continue factoring out alphas from the wedge product,

just like as in the two product case: “
ÿ

j,k
jăk

α^1jα
^
2k

´

vj ^ vk ^ ¨ ¨ ¨ ^
ÿ

αnivi

¯

. Be aware that

since each element of this wedge product is going over all elements of the basis of V that we
do not have any explicit ordering of these factored-out wedge products; in other words, vj
and vk have no relationship between them yet. If we continue with this product, factoring
out terms, we see that:

• All the scalar terms are going to end up outside the wedge product

• The sum becomes a multiple sum of n seperate indices

• The wedge product inside the multiple sum is arbitrarily arranged

If we piece these facts together we conclude that we can express the whole thing in terms of
a sum over γ P Γpnq such that the sequence is increasing (remember the two product case

where we showed that the multiple sum ends up being
ÿ

j,k
jăk

; this carries over into multiple

indices); denote the set of increasing sequences of length n over m letters as Λpnq:

ÿ

γPΛpnq

αj
`

vγp1q ^ ¨ ¨ ¨ ^ vγpn
˘

Thus for n arbitrary vectors tuiu we can express them as the sum
ř

γPΛpnq αj
`

vγp1q ^ ¨ ¨ ¨ ^ vγpn
˘

;
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the conclusion is that

ÿ

γPΛpnq

`

vγp1q ^ ¨ ¨ ¨ ^ vγpnq
˘

must span
n
ľ

V

Finally, since we have a spanning set for the space
n
ľ

V , we can ask: what dimension is
n
ľ

V ? Looking at what we have above, we conclude that dim
n
ľ

V is the same as the size

of Λpnq. If you recall your combinatorics, this is precisely

ˆ

m

n

˙

1.4 Universal Property

Claim: For an exterior product generated on n vector spaces
Źn Vi ‰ 0, the resultant space

satisfies the universal property.

Proof. We must show that for any n-linear map ϕpvq (that is, a mapping in n separate
variables) that there exists linear maps L and a unique L^ such that L^pLpvqq “ ϕpvq.
To do so, we will use the following diagram as a framework: We will make use of the

n
ą

V

V¨
˚

˝

n
ą

V

˛

‹

‚

n
â

V
n
ľ

V

U

ϕ L n-linear L^n-linear antisymmetric

Figure 1: Relations between spaces and the exterior product

universality of the tensor product. Consider the following map: S :
n

ą

V Ñ
n
â

V defined

by Spv1, v2, ..., vkq “
ÿ

σPSn

p´1qσP pσqpv1b¨ ¨ ¨bvnq where P pσqpv1b¨ ¨ ¨bvnq “ vσp1qb¨ ¨ ¨bvσpnq

is a permutation of tensors. We wish to show that this fulfills the requirements we want
for an antisymmetric n-linear map. For an arbitrary transposition of inputs, τ : evaluate
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Spvτp1q, ..., vτpnqq:

Spvτp1q, ..., vτpnqq “
ÿ

σPSn

p´1qσP pσq
`

vτp1q b ¨ ¨ ¨ b vτpnq
˘

“
ÿ

σPSn

p´1qσP pστq pv1 b ¨ ¨ ¨ b vnq

“
ÿ

σPSn

p´1qστ
´1

P
`

στ´1
˘

τ pv1 b ¨ ¨ ¨ b vnq

“
ÿ

σPSn

p´1qσp´1qP pσq pv1 b ¨ ¨ ¨ b vnq

“ ´
ÿ

σPSn

p´1qσP pσq pv1 b ¨ ¨ ¨ b vnq

Hence the function S is antisymmetric, and is the linear map we are looking for.

5 of 5


