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1 Tensor Products and Hom

Notation: we use π where the book uses d
Let U, V vector spaces of dimension n; basis setsB “ ui; i “ 1, ..., n and C “ vj, j “ 1, ..., n.

Consider the relationship between HompU bV q and HompUqbHompV q: we will establish an
isomorphism between the two.

Let L P HompUq, N P HompV q. Set LπNpu b vq “ Lpuq bNpvq; LπN is an element of
HompU b V q and Lp¨q bNp¨q is an element of HompUqbHompV q.

First concern: Not every element of UbV may be of the form ubv; that is, there may be
some non-decomposable elements of the form u1bv1`u2bv2 that do not simplify into ubv.
To dance around this neatly, we instead patch up our definition of LπN : we will define it over
the basis elements of U bV , uib vj for i, j; since now LπN is a linear transformation on the
basis of a space it is now the linear transformation of all of that space U b V ; thus we have
that LπN is a unique element of HompU b V q (as determined by what LπN does to the ba-
sis elements). This is going back to the theory of linear transformations on vector space basis.

For an isomorphism we need a bijective linear map between two spaces. Can we produce
a linear map L : HompUqbHompV q ÑHompU b V q? Using the universal property, we can:

HompUqˆHompV q VHompUqˆHompV q HompUqbHompV q

HompU b V q

ψ

Lϕ

Figure 1: Existence of a commuting map L

If we can find a bilinear map ϕ then the universal property of the tensor product gives
us the existence of the linear map L. As it turns out, the map ϕpL,Nq “ LπNpui b vjq is
exactly that bilinear map. It’s easy enough to check linearity:

ϕpL1 ` L2, Nqpui b vjq “ pL1 ` L2qui bNvj

“ L1ui bNvj ` L2ui bNvj

“ ϕpL1, Nq ` ϕpL2, Nq

Similar arguments hold for the remaining bilinear conditions; they all hinge upon the linear-
ity of the tensor product on elements of U and V (remember that Lu P U and Nv P V since
L P HompUq and N P HompV q).
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Thus the bilinear map ϕ gives us a unique linear map L : HompUq b HompV q Ñ
HompU b V q.

Now we have to determine that L is a bijective map; this will turn out to be very nontriv-
ial. The dimension of the domain and codomain are the same, so we must show injectivity:

Claim: L is injective

Proof. Let H “
ř

i Li b Ni be an element in HompUq b HompV q; we need to check if
LpHq “ 0 ùñ H “ 0

Lemma 1. For a linear map f , injectivity is equivalent to fpxq “ 0 ùñ x “ 0

Proof. Injectivity is defined as fpbq “ fpaq ùñ b “ a. This is equivalent to fpbq ´ fpaq “
0 ùñ b ´ a “ 0. Since f is linear, this is equivalent to fpb ´ aq “ 0 ùñ b ´ a “ 0; thus,
injectivity is equivalent to @b, a : fpb´ aq “ 0 ùñ b´ a “ 0.

So we will start with the assumption that LpHq “
ř

i pLi bNiq pub vq “ 0 and attempt to
work our way down to the injectivity conclusion.

From here, know that the tensor product of linear maps is itself a linear map; in other
words, we can rewrite

ř

i pLi bNiq pu b vq “
ř

i Lipuq b Nipvq. This is equivalent to el-
ement H applied to the arbitrary vector pu, vq. In this representation, note that whether
or not this linear combination is equal to zero depends directly on whether or not the sets
Lipuq; i “ 1, ..., n and Njpvq; j “ 1, ..., n are linearly dependent:

Lemma 2. If both Lipuq; i “ 1, ..., n and Njpvq; j “ 1, ..., n are linearly independent then
the sum

ř

i Lipuq bNipvq ‰ 0 for any pu, vq.

Proof. If both of those sets are linearly independent then the tensor product set of all
Lipuq b Nipvq must also be independent. Thus the sum of elements in the tensor prod-
uct set

ř

i Lipuq bNipvq ‰ 0 by definition of independence, for any pu, vq.

The payoff is that if either one of Li or Ni is linearly dependent then the map L is injective.

We will attempt to show that indeed one of the sets Li and Ni have to be linearly
dependent. First, if Li were all linearly independent for i from 1 to n, by examining the sum
of tensor products the only way the sum could be zero is for the linear combination to be the
trivial linear combination- this implies that Ni must be dependent. Continuing case-by-case,
let’s assume without loss of generality that L1, L2...Lm is maximally independent (that is,
that Li is not fully independent) for some m from 1 to n´ 1. Now:

0 “
n
ÿ

1

Lipuq bNipvq

“

m
ÿ

1

Lipuq bNipvq `
n
ÿ

m`1

Lipuq bNipvq
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Think about what the element Lm`1 is: because of the maximal independent condition we
are able to rewrite this element as the linear combination:

Lm`1puq “
m
ÿ

1

αiLipuq

0 “
m
ÿ

1

Lipuq bNipvq ` Lm`1puq bNm`1puq `
n
ÿ

m`2

Lipuq bNipvq

“

m
ÿ

1

Lipuq bNipvq `
m
ÿ

1

αiLipuq bNm`1pvq `
n
ÿ

m`2

Lipuq bNipvq

We can now group the first two summands together:

m
ÿ

1

Lipuq b pNipvq ` αiNm`1pvqq `
n
ÿ

m`2

Lipuq bNipvq

So our linear combination from above is

“

m
ÿ

1

Lipuq b pNi ` αiNm`1q pvq `
n
ÿ

m`2

Lipuq bNipvq

What we have accomplished is we have taken the element correspondin to Lm`1 and rewrit-
ten it so that it is no longer present in the sum. In return, we have expanded the Ni terms.
We can repeat this argument, compressing all the further terms above Lm. Finally, we arrive
at

řm
1 Lipuq b Ñipvq. Since the Li were independent from 1 to m, in order for this sum to

equal zero we must have that the Ñi’s must be a dependent set (i from 1 to m).

However: with this in hand we can just repeat the argument, on Ñi! Since they are a
dependent set, without loss of generality we can say Ñm is capable of being written as a
linear combination of elements Ñi; i “ 1, ...,m´ 1; Ñm “

řm´1
1 βjÑjpvq; follow the theme of

the previous argument:

0 “
m
ÿ

1

Lipuq b Ñipvq “
m´1
ÿ

1

Lipuq b Ñipvq ` Lmpuq b

˜

m´1
ÿ

1

βjÑjpvq

¸

“

m´1
ÿ

1

Lipuq b Ñipvq `
m´1
ÿ

1

βjLmpuq b Ñjpvq

“

m´1
ÿ

1

pLi ` βiLmq puq b Ñipvq

We have now rewritten the entire sum 0 “
ř

Lipuq b Nipvq in terms of m ´ 1 elements,
where each element is itself a linear combination of terms inside the set Li for i “ 1, ...,m;
at this stage, we can keep repeating via induction to arrive at a single term of N and a long
linear combination of elements from Li for i “ 1, ...,m- however, since we assumed that Li

is maximally independent for m, this is a contradiction since the whole thing sums up to
0. Thus we can conclude that the set Li must be linearly dependent (since it cannot be
maximally independent in any size, except 0). And thus the map L is injective.
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2 Quantum Mechanics

I’m not really sure about this section- I have never studied this part of QM theory before

The possible states of a quantum mechanical system occupy points in a Hilbert space,
the “state space”. The nature of the system itself depends on the problem in question; for
a concrete example, we can describe the space given by states of various locations and mo-
mentums of particles; px, ρq where x is the location, ρ is the momentum. The “observables”
are self adjoint bounded projections on the Hilbert space; we can tensor the spaces of several
systems together to get the composite system made up of all the individual systems. In the
concrete example we can tensor the Laplacian potential function H “ H1b 1` 1bH2; if we
have n particles then the composite system will be bn

1Hi.

One of the important operators is the annihilation/creation operator pair. With n par-
ticles, the creation operator that governs the creation of a new particle is given by

α˚ : Hn “ b
n
1Hi Ñ Hn`1

α˚phq pv1 b ¨ ¨ ¨ b vnq

α˚phq “
?
n` 1 phb v1 b ¨ ¨ ¨ b vnq

h is the term corresponding to energy being absorbed and turned into a particle of the
system, and

?
n` 1 is the fudge factor.

The annihilator is the opposite: for an n particle system we have the map

α : Hn Ñ Hn´1

αphq pv1 b ¨ ¨ ¨ b vnq “
?
n ¨ σph, v1q pv2 b ¨ ¨ ¨ b vnq

Here, σ is the Hilbert space inner product;
?
n is the fudge factor again, and h is the energy.

}α˚phq} ď
?
n` 1}h}

This implies this is a bounded linear operator.

The different energy states of a given quantum system are in fact the eigenvalues of the
Hilbert space transforms.
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3 A Concrete Example

Consider the space m2pRq of 2 by 2 matricies with real valued entries. The basis for this

space is u1 “

ˆ

1 0
0 0

˙

, u2 “

ˆ

0 1
0 0

˙

, u3 “

ˆ

0 0
1 0

˙

, u4 “

ˆ

0 0
0 1

˙

.

Consider the basis of m2pRq˚, or all possible linear transformations on 2 by 2 matrices:
Lijpuiq “ uj. These are all the different ways any entry in the matrix can be sent to any other

matrix; an arbitrary linear transformation on 2 by 2 matrices will be the sum
4
ÿ

i,j“1

αijLij.

For example, we could have the linear transformation L “

ˆ

0 1
2 0

˙

which would line up

with the sum 2L13 ` 2L24 ` L31 ` L42. Now, through the tensor product we can actually
identify: Lij « ui b uj; thus the linear combination

ř

αijLij “
ř

αijpui b ujq, leading us
to conclude that the matrix representation of a tensor product is the matrix of values rαijs.
In the most explicit terms possible, here is a decomposition of a linear transformation into

terms of tensor products and coefficients (using the linear transformation L “

ˆ

0 1
2 0

˙

from before):

ˆ

0 1
2 0

˙

– 2L13 ` 2L24 ` L31 ` L41 “

¨

˚

˚

˝

0L11 0L21 1L31 0L41

0L12 0L22 0L32 1L42

2L13 0L23 0L33 0L43

0L14 2L24 0L34 0L44

˛

‹

‹

‚

“

¨

˚

˚

˝

0L11 0L21 1L31 0L41

0L12 0L22 0L32 0L42

0L13 0L23 0L33 0L43

0L14 0L24 0L34 0L44

˛

‹

‹

‚̀

¨

˚

˚

˝

0L11 0L21 0L31 0L41

0L12 0L22 0L32 1L42

0L13 0L23 0L33 0L43

0L14 0L24 0L34 0L44

˛

‹

‹

‚̀

2

¨

˚

˚

˝

0L11 0L21 0L31 0L41

0L12 0L22 0L32 0L42

1L13 0L23 0L33 0L43

0L14 0L24 0L34 0L44

˛

‹

‹

‚̀

2

¨

˚

˚

˝

0L11 0L21 0L31 0L41

0L12 0L22 0L32 0L42

0L13 0L23 0L33 0L43

0L14 1L24 0L34 0L44

˛

‹

‹

‚

Or for clarity: “

¨

˚

˚

˝

0 0 1 0
0 0 0 1
2 0 0 0
0 2 0 0

˛

‹

‹

‚

“

¨

˚

˚

˝

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚̀

¨

˚

˚

˝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

˛

‹

‹

‚̀

2

¨

˚

˚

˝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

˛

‹

‹

‚̀

2

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

˛

‹

‹

‚

“ A`B ` 2C ` 2D

Now: u2bu1 “

ˆ

0u1 1u1
0u1 0u1

˙

“ A; u2bu4 “ B; u3bu1 “ C; u3bu4 “ D. The discrepancy

in indicies (for example pu2bu1q – L31) is easily handled by relabelling; puibujq is, in fact,
isomorphic to tLiju
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