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1 Matrix Representation

1.1 Definition
Let V' be a finite dimensional vector space, B = {vy,...,v,} a basis for it. For any vector
n

veV:IHay,.,a,} with v = Z a;v;. The alphas are unique because of the basis condition;
i
aq

&%)
we call the column vector . the coordinatization of v at B, otherwise written as [v] .

O
Given any linear transformation L € Hom(v) the matriz representation of L, [L]g is the
matrix with columns [L(v;)] 5 (the images of the basis vectors under L).

1.2 Uses of the Matrix Representation

With this in hand, we see that the operation of matrix multiplication works in the same way
as a linear transformation does on vectors:

Of course, this fact requires proof:

Proof. Let v € V; by the basis we have v = 2%‘%‘- Consider [L(v)]g:

i=1
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the ith column of the matrix [L],

= Zai [L] e

e; is the 7 basis vector; this is a standard trick to pull columns out of a matrix

= Y (L] [vilp

the coordinatization of a basis vector of itself is e; : v; = Ovg + Ovy + ... + 1v; + ... + Ov,

= [L]p (Z o [U’i]B>

= [Llp[v]g

coordinatization preserves linear combinations

= [L]zlvls
0

The matrix representation also yields an identity for composing linear transformations:

[L]B [N]B = [LN]B

The process of composition of transformations is the same as the process of matrix multiplica-
tion; in essence, matrix multiplication is defined the way it is in order for this representation
of composition to work.

2 Vector Products and Vector Direct Sums

2.1 Finite Product and Direct Sum
2.1.1 Vector Space

n n
Let V4, ..., V,, be vector spaces; we know HVi by the name of its isomorphic space X V;,

i=1 =1
the Cartesian product of the spaces. This new space, along with the coordinate operations
from V;, yields a new vector space.

2.1.2 Projection and Injection Maps

The projection map p; : Hvi — Vj is defined by stripping out only V}; the injection map
i=1
v Vi — HV" sends V; to 0,0, ...,V},0,0 (the jth spot is Vj, all the others are 0). Both p,

i=1
and ¢; are linear maps.
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2.1.3 Direct Sum

Let V be a vector space, Vi, Vs be subspaces. Define V; + V5 = {v; + vy = v e V} be the
subspace created by vectors that can be broken down into representations with component
vectors in Vi and V5. The following theorem concerns such subspace breakdowns which
have unique representation and the property that the subspaces must have; namely, that the
intersection of the two subspaces is the zero vector iff vectors in V' have a unique breakdown
by the two subspaces.

Theorem 1. Vi[( Vo ={0} < VoeVi+Vo:3weV v =u + vy

Proof. =: Suppose for sake of contradiction that there is a nonzero vector without a unique
representation: v = v; + vy = U7 + vy. This turns into v = vy — U] = Uy — v9; now we have
that v can be written entirely as vectors contained in V; and also as vectors in V5. In other
words, v € V; (] Va; but by the hypothesis, this means v must be the zero vector. Thus by
contradiction, for any vector, there must be only a unique representation of that vector as
the sum of vectors from V; and V5.

«: Suppose for contradiction that there is a nonzero v in the intersection Vi [) V5. Starting
with the hypothesis, every nonzero vector in v has a unique representation as the sum of
vectors from V; and V5. Consider the following equation: v = v + 0 = 6 + v; these are two
different ways to write v as the sum of two vectors from V; and V5, but by the hypothesis these
must be the same representation- this can only be possible if v = 6. Thus by contradiction

Vif1Vz = 6. O
When Vi [ V2 = 6 we can define V; X V5 as the direct sum Vi @ V. With n vector spaces
we can generalize the direct sum; the condition generalizes into V;(V; = 0;i # j for

every pair of vector spaces. The projection map is p; : (—DVi — V; and the injection

i=1
n

map is ¢; : V; — @Vi. The direct sum notation is required because we require unique
i=1

representations to have unambiguous projections and injection mappings. With the unique

representation and unambiguous projections and injections, it turns out that the vector space

given by the direct sum (along with the projection and injections for the direct sum) are

isomorphic to the product vector space and its projections and injections.

dri=T[v
=1 i=1

The last important tool is the bijection between a vector product space and the set of
n

functions mapping n-tuples to the formal union UV;
i=1

ﬁVi = {f 1, .., n] — OVQ}

In prose this is understood as a set of functions that have the following character: f(i) € V;
fori e [1,...,n]. For example, if we have n vector spaces we can operate on two vectors taken
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from the product space:
(U1, ooy Un) + (W1, ooy wy) = (V1 + W,y ooy Uy + W)

By using the function definition of the vector product space we see that this is exactly the
same under function addition and scalar multiplication as

{(f+9)(@) = f(i) +g(i)}:iel,...n]
2.2 Countable Products

0
Generalizing one step further, consider the product HV;. We would like to say that this
is equivalent to a countable Cartesian product in thelselmme way of the finite case- however,
recall from topology that a countable Cartesian product could be uncountable. To get a
better handle on this we can we should re-interpret the countable product: “the set of all
sequences where the ith entry comes from the ¢th vector space”; coordinate operations now
correspond to entry operations in sequences, and we express the sum of two vectors as

(v1,v9,...) + (w1, wa, ...) = (v + Wy, vy + wWwo,...)

The projection and injection maps still work,

o]
V= v
i=1

Remember that these do not map whole spaces to each other, only elements inside the
domain to elements inside the range. For instructive purposes, consider the image of the
injection map ¢;V; This is a subspace:

LjLQ S;I_ILQ
i=1
Consider the linear span of ¢;(v;) for j = 1,...,00. The span is isomorphic to all finite linear
combinations; that is, the set of all sequences with finitely many nonzero entries. This artifice
is necessary to wrap our heads around countable vector space products. This linear span is

0 0
a proper vector subspace of HV;; incidentally, this proper subspace is (—BV;; the proper is
i=1 i=1
because while the direct sum cannot contain infinite sequences, the vector product clearly
does contain infinite sequences. Observe how the direct sum is no longer isomorphic to the
product as was in the finite case.
Note that the bijection to sets of functions works seamlessly from before:

flve {55 ()
=1 =1
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The direct sum subspace is therefore

é%={ﬂNHG%}
i=1 i=1

where the function f are almost always zero (that is, they are nonzero on finitely many
indicies).

2.3 Uncountable Products

The next level of generalization is to uncountable vector space products. Observe that
already we have difficulty in the form of writing down what we mean by an uncountable
vector product. In this case we have some indexing set A; the product is thus HVi

FISIN
Here the only tool that gives us any headway on this concept is by using the artifice of the
bijection to sets of functions. In this case,

o0
HW%{%AHU%}
SN 1eA
where f(i) € V;. Vector space operations are thought of in the same way as addition and
scalar multiplication of functions.

The injection ¢; (V;) = {f € HV" : f(i) =0if i # j, f(j) = something in V]} It injects
IS\

into the jth component in the product space. The projection p; (H%) = V; works the
IS\

same way; it isolates out the V; vector space; with the function notation, p; : [[, Vi = Vj;

p;i(f) = f(j) where f is from the function notation.

The direct sum of the uncountable vector space collection is @V} = { fe HVQ} : where f(1)
€A ieA

almost always zero.

3 Dual Spaces

Now that we are familiar with product spaces in the finite, countable, and uncountable cases,
we turn our attention to dual spaces of vector spaces. Given a vector space V' the dual vector
space V* of V is the set of all linear transformations Hom(V, F') where F' is the field of
scalars of the vector space (remember a vector is just a collection of scalars defined over
some underlying field).

3.1 Finite Case

Let V' be a finite dimensional vector space, B a basis (v1, ..., v,); define f,, : V. — F such
that f,(vm) = nm where 0, ,, is the Kronecker delta (if n = m d,,, = 1, else 0, = 0).
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The basis of the original vector space is directly related to the basis of the dual space:
Theorem 2. {fi,..., f,} is a basis for V*.

Proof. The number of elements in this set is the correct amount for a basis, so to show it is a
basis (via the maximally independent property) we want to show that the set in question is
linearly independent. Let Zai fi = 0 be a linear combination; observe that the zero here is
the zero function, not the zero scalar. Operate this linear combination on any basis vector v;:
0= Zai fi(vj) = o (since the Kronecker delta annihilates all but the jth index). Since this
is true for any j, we have that all the o;; must be zero; this is the trivial linear combination.
Hence {fi,..., fn} is a basis for V*. O

3.2 Uncountable Case
This is where things get difficult.

Given an uncountable vector space V' over field F' with basis B = v; : i € A (guaranteed
to exist by a previous theorem) we have that this specific basis gives us the collection of
functions f such that f : A — F; f; = f(i) is zero almost everywhere and Z fiv; is a vector

SN
in V; the dual space is therefore established by taking all the functions from A to F (this bit
should remind you of the artifice we used in uncountable vector space products: the dual of a

0
given V; is the set of all linear transformations V; to I’ and so HVi = { f:A— UV;} with
SN
f(i) € V;). Recall that the uncountable direct sum is isomorphic to the set of all functions
fe HV; : f(i) almost always zero; the dual space, is isomorphic to all possible sequences of
e
linear transformations.

The relation we have been pushing for is, in other words:

(@v) =110

TSN e

The last, extremely challenging and unanswered question, is what the isomorphism map is
between these two objects. We have shown that they are the same thing, but we have not
produced any possible isomorphism; it turns out to be very difficult, but in the scope of this
class, to find it.
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