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1 Introductory Material

1.1 Properties & Definitions

Notation concerns: let V be a vector space with U a subspace of V : U ≤ V (the ≤ is for
relation between spaces). Let C be a subset of V ; this is written as C ⊂ V .
C is therefore a set of vectors, all in V . There are some things we can say about C (this is
review material from basic linear algebra):

• C is independent : the sum
k∑
1

αici = θ (the zero vector) =⇒ αi = 0 for all i, where ci

are all of the vectors in C. In prose, any finite linear combination equalling θ implies
that the scalars in the linear combination are all 0; i.e. it is the trivial combination.

• C spans V : ∀v ∈ V ∃αi |
k∑
1

αici = v. In prose, every vector in the space V is a linear

combination of vectors in the span, C.

• C is a basis of V : C is a linearly independent spanning set of V .

Notice that these all assume C is a finite subset. This is an important distinction: we will
discuss it after Zorn’s Lemma but for now be aware that these are only definitions for finite
subsets.

1.2 Theorems

Another property of basis sets is that they are maximally independent in V (independence
is a quality of the subset, but to be maximally so depends on the space the subset is taken
from).

Theorem 1. C ⊂ V is a basis ⇔ C is maximally independent in V .
C is maximally independent in V means that for every D with V ⊃ D ⊃ C, D is not
linearly independent (in other words, D is linearly dependent, or that there is a nontrivial
combination of vectors from D that add up to θ).

Proof. ⇐: Let C be maximally independent in V . Let v be a vector not in C, call D =

{v} ∪ C. D is dependent by assumption; hence ∃
k∑
1

αidi = θ where not all αi = 0. One

of the di vectors must be v since C is itself linearly independent (else we would have a
nontrivial combination of vectors only from C that equal the zero vector, which violates our
assumption); without loss of generality assume d1 is v (we can reindex the finite sum any

way we please). In other words, θ = α1v+
k∑
2

αidi; hence v = −
k∑
2

αidi
α1

for any v; di in the

sum is now only vectors from C since the only vector not in C was v. This means that any
vector v ∈ V can be rewritten as a linear combination of vectors from C; C is a basis.
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⇒: Let v 6= θ ∈ V ; hence C is a basis means there is a linear combination
k∑
1

αici = v. Let

D ⊃ C with v ∈ D and v��∈C; thus the linear combination −v +
k∑
1

αici = θ implies that D

is linearly dependent; C is maximally independent.

So far there has been one result lurking in the background behind all of this work. We
would be poor algebraists indeed if we did not set ourselves the task of the following theorem:

Theorem 2. Every vector space has a basis.

In order to prove this result we will employ a bit of artifice known as Zorn’s Lemma.

1.3 Zorn’s Lemma

This section will be a discussion of the statement, meaning, and use of Zorn’s Lemma.

Zorn’s Lemma: Let X be a partially ordered set such that every chain in X has a least
upper bound; then X has maximal elements.

The lemma was originally proposed as a new axiom of set theory; it has many applica-
tions inside algebra. As it turns out, the lemma is equivalent to the axiom of choice (and
the well-ordering theorem). As a result, there is no proof so much as a justification of its
use as an axiom. The set-theoretic implications are outside the scope of the class; however
we will need to understand the use of the lemma for linear algebra proofs.

Given a set X 6= ∅, X is partially ordered if there exists a binary relation ≤ on X such
that:

• (Reflexivity) x ≤ x

• (Antisymmetry) x ≤ y, y ≤ x =⇒ x = y

• (Transitivity) x ≤ y, y ≤ z =⇒ x ≤ z

A full or total order is one where for any x and y in X we can say x ≤ y or y ≤ x. An
example of a partial order (as distinct from a total order) is the order given by the inclusion
relation on the power set of X for nonempty X. Consider 1, 2, 3 and its power set and how
the different sets are included in each other to see the antisymmetric, transitive, and partial
properties.

A chain Y in X is a totally ordered sequence of subsets C1 ⊂ C2 ⊂ ... of X. Note
that a chain can comprise of infinite sets; as an example, consider the power set of the
integers and the inclusion relation. The set {In} where n is a positive integer and In is
the set of all integers less than n is a chain in the ordering. This interpretation helps un-
derstand the following terms defined on chains: we can interpret infinite sequences as chains.
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The remaining terms of the hypothesis of Zorn’s Lemma are:

• M ∈ X is a maximum of Y if for any N ⊃M then N��∈ Y

• An upper bound of Y is an element B ∈ X such that B ≥ C ∀C ∈ Y (keep track of the
distinction between the inclusion relation for sets in the chain and the order relation
≥)

• The least upper bound is the smallest element L in the set of all bounds B for a given
chain Y .

We are now in the position to prove the theorem from the previous section.

1.4 Linear Algebra

Theorem 2. Every vector space has a basis.

Proof. Don’t blink or you’ll miss it.
Let V be a vector space and X be a family of independent subsets of V . X is partially
ordered under the set inclusion relation; let C1 ⊂ C2... ⊂ Cn ⊂ ... be a chain in X; consider

the union C =
⋃
i

Ci (countable or finite). C is certainly a bound on the chain by the union

property; we will show it is the least upper bound. Suppose D is an upper bound; thus

Ci ∈ D ∀i; hence
⋃
i

Ci ∈ D, hence C ∈ D. Thus for any bound D for the chain, C ≤ D.

Thus every chain in X has a least upper bound; hence by Zorn’s Lemma X has maximal
elements; this is a basis for X.

Note that this result does not tell us how to find the basis, or in fact anything useful
at all other than “every vector space has a basis”. For homework next Thursday (Feb. 6),
adapt the technique of this proof to show that any independent subset of a vector space is
contained in a basis of that vector space.

A side implication of basis sets and vector spaces is that any two basis of the same space
must have the same cardinality (this result is trivial for finite basis sets). The theorem as
proved applies not only to finite but to infinite vector spaces; the collection of all infinite
sequences, for example. Intriguingly we know that there is a basis, but we have no idea at
present what it looks like or anything about it. Let us bring in the concept of homomorphism
before we discuss other examples of vector spaces.
If V is a vector space and W is another vector space, the map L : V → W is a linear
transformation (or linear) if for v ∈ V and w ∈ W

• L(v + w) = L(v) + L(w)

• L(αv) = αL(v)

Sometimes “L is linear” is written as L ∈ Hom(V,W ).

3 of 4



Larry Fenn Jan. 28, 2014

Theorem 3. Given any vector v ∈ V , the basis representation of the vector v is unique.

Proof. Let B be the basis of V ; suppose for sake of contradiction two different linear com-

binations that add up to v:
∑

αibi = v and
∑

βibi = v where for at least one i, αi 6= βi.

Thus the difference
∑

(αi − βi)bi = θ is a nontrivial linear combination to the zero vector,

which implies the basis B is linearly dependent; a contradiction.

As a result of this, since every vector can be uniquely written as a combination of the
basis vectors, a linear transformation L is completely determined by the values it takes of the
basis vectors. In other words, we can speak of vector spaces and homomorphisms between
them entirely in terms of basis elements and their images. The function f : B → W from
the basis of V to W where f(vi) = wi gives rise to the linear transformation L : V → W

where for any v L(v) = L(
∑

αivi) =
∑

αif(vi).

1.4.1 Example: L2 Space

In the L2 space V here is the space of all polynomials on a set U ⊂ Rn (n-variable polyno-
mials). Thus there is a linear transformation L : V → V defined by L(p) = ∇2p = ∇ · ∇p
(the divergence of the gradient of the polynomial). We know this is a linear transformation
because differentiation is a linear operator. Looking ahead, the kernel of L happens to be
the set of harmonic functions. The basis, while it exists because of the previous theorem, is
not easily known. Contemplate the meaning of Taylor series, Fourier series in the context of
linear algebra.
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