
Stochastic mixed optimization for constrained resource optimization
problems.

Larry Fenn and Felisa Vázquez-Abad

Abstract— Resource allocation problems as found in telecom-
munications or transportation require the determination of both
the fewest resources needed to satisfy some quality condition
and, implicitly, how to use those resources. In applications
there is no closed form expression for the quality condition
as a function of resource allocation, motivating a treatment
of these problems as stochastic optimization problems. One
feature, found in transportation problems and elsewhere, is
that the resource parameter is a discrete variable. We present
and compare non-gradient and gradient methods for solving
these problems.

I. INTRODUCTION

Consider the constrained optimization problem

arg min
b∈N

(
min

u∈I : G(b,u)≤c
Cb(u)

)
(1)

where I ⊂ Rd is an interval, and for each value of b the
function Cb is a cost function of the continuous parameter
u ∈ I . The parameter b represents a “resource”. The
constraint function satisfies G(b, ·) ∈ C2 for any fixed b,
and G(·, u) is monotonic decreasing.

In many applications the (optimal) cost function increases
with increasing resources, so the optimization problem re-
duces to a constraint satisfaction problem. Because G de-
creases with increasing b, then the original problem is
equivalent to finding the solution of the simplified problem:

arg min
b∈N

f(b) ≤ c, (2)

where f(b) = minu∈I G(b, u). We will assume that
f(b) is strictly decreasing (if not, then multiple values of
resources yield constant satisfaction and ties can be broken
by minimizing the value of b).

The stochastic optimization problem is to solve (1) when
G is not available in closed form. We assume here that
for any given values of b and u an estimate of G(b, u)
may be obtained by simulation. In the general scenario
(which we consider in our model), long simulations can
approximate a stationary average value G(b, u). The focus
of this research is how to efficiently find a solution with
as few simulations as possible. We therefore try to find the
least amount of simulations while exploring solutions, and
seek early termination of sub-problems to determine the

This work is partially supported by the CUNY Institute CoSSMO
L. Fenn and F. Vázquez-Abad are with the Department of Computer

Science, Hunter College and CUNY Institute for Computer Simulation,
Stochastic Modeling and Optimization (CoSSMO), New York

Fig. 1. Illustration of the constraint G(b, u).

correct value of b.

Problems of this type include resource allocation for
transit networks, with b as the number of buses and u as
a control variable for headway between buses. Specifically,
the problem that motivated the current research is studied in
[1] and it dates back to 2005 when the Melbourne airport
needed advice to buy a new fleet of buses that bring people
to and from the terminals and the parking lots. It was
implicit that an optimal scheduling (here represented by a
quantity u ∈ R+ called the “headway”) would be applied,
so it was a problem of deciding how many buses b to buy,
ensuring a quality of service. In particular, they required
that at least 95% of the passengers should wait less than 10
minutes for a bus.

In [1] we defined a simplified model with Poisson arrivals
of passengers to the system. Buses have finite capacity,
they start empty at the bus depot and proceed to pick up
passengers in the Arrivals terminal, then go to all the parking
lots first unloading and then loading passengers. The final
stop is at the Departures terminal where passengers unload.
Every u units of time a new bus should depart from the
depot, unless there are no more buses there. When there a
few buses, both large or small values of u lead to larger
probability of waiting more than 10 minutes, because all the
buses will be on route most of the time and the bus depot
will be empty, which explains the convexity of the function
G(b, ·). As the number of buses increases, for each value of
u this probability decreases.

A realistic mathematical model is too complex for
analysis. Our ghost simulation method uses a different
model where passengers are represented with fluid
approximations. The model corresponds to a Filtered
Monte Carlo model that accelerates the simulation time
(see [1] for details). Importantly, many replications of a
one-day simulation are required in order to evaluate the
tail probability with reasonable precision for each value of
(b, u). In that case the resource variable b is not too large
and exhaustive search works, but the optimization on u
requires long simulations. In the current paper we study the
generalization of such problems and envision in particular
problems where b may be very large. We consider both
non-gradient and gradient methods.

Section II considers the deterministic scenario, for which
we introduce the idea of early stopping the exploration
phase for the minimization subproblem, in order to achieve
the fastest convergence to the solution b∗, u∗. In Section
III we present a method that adapts the binary search and
golden section (GS) search algorithms into a stochastic
context, which is applicable when only estimates of G are
available and when u ∈ R (we are presently working on the
extension of stochastic GS for multidimensional problems).

Performance of the algorithm is presented in Section
IV, including probability of correct selection (PCS) for
b∗ and an estimate for the final error in f(b∗). In some
cases, estimates of the gradient ∇uG(b, u) may be easy
to calculate in the simulation, and in this case we use a
truncated gradient search on u instead of the GS method.
In Section V an example application is described and
comparisons are made between GS and gradient search
methods. Conclusions and suggestions on further research
are given in Section VI.

II. DETERMINISTIC SOLUTION METHOD

First we will discuss the deterministic case. These results
concern problems where G(b, u) function evaluation is com-
pletely deterministic; later we will extend them to cover cases
involving stochastic processes.

A. Golden Section

Fix b; define Gb(u) = G(b, ·). First, we will define a
procedure to find the minimum of Gb(u):

Recall Gb(u) ∈ C2[0, 1]; suppose further that

0 < G′′b (u) ≤ 1

Kb
(3)

Denote the minimum of Gb(u) as Gb(u∗). The following
well-known procedure finds a neighborhood containing u∗

of size δ [2]:

Require: a < u∗ < b
while b− a > δ do

u1 = a+ (b− a)(1− ϕ)
u2 = a+ (b− a)ϕ
if Gb(u1) < Gb(u2) then

b = u2
else

a = u1
end if

end while
In the constrained optimization case, the additional escape

condition to the loop occurs when either Gb(u1) or Gb(u2)
falls below the constraint.

With the assumptions from earlier, Taylor’s theorem guar-
antees a bound on |Gb(u)− Gb(u∗)| for all u in a neighbor-
hood of u∗ of size δ:

|Gb(u)− Gb(u∗)| ≤
δ2

2Kb
(4)

Thus by choosing an algorithm parameter for error toler-
ance εb > 0 we can guarantee finding an interval containing
u∗ such that |Gb(u)− Gb(u∗)| < εb by choosing δb <√

2Kbεb. Let Lb represent the length of the domain of u for
this fixed value of b. Since every iteration of the algorithm
above shrinks the interval by a factor of ϕ = 1+

√
5

2 , we can
determine the number of iterations required by replacing δ
with Lbϕn, the size of the search interval after n iterations:

Lbϕ
n <

√
2Kbεb

n logϕ <
1

2
(log 2 + logKb + log εb − 2 logLb)

−n logϕ >
1

2
(− log 2− logKb − log εb + 2 logLb)

ϕ < 1 so logϕ < 0; thus − logϕ > 0:

n >
−1

2 logϕ
(− log 2− logKb − log εb + 2 logLb)

n >
−1

2 logϕ

(
− log 2 + log

1

Kb
+ log

1

εb
+ 2 logLb

)
This is a lower bound on the number of iterations n

required phrased in terms of a curvature bound, tolerance
level, and initial search size. For future reference define the
function n(K, ε, L):

n(K, ε, L) =

⌈
−1

2 logϕ

(
− log 2 + log

1

K
+ log

1

ε
+ 2 logL

)⌉
Lastly, the number of points the function Gb(u) is evalu-

ated at is equal to n(Kb, εb, Lb) + 1 (since the first iteration
requires the use of two points to get started, and all of the
others exploit the property of ϕ to re-use information from
prior iterations).

B. Binary Search

Since f(b) = minu∈I G(b, u) is assumed to be monotonic,
the binary search algorithm can be used on f(b). Moreover,
since the binary search algorithm is predicated on a binary

test then in the constrained optimization problem it suffices
to test if the constraint is not satisfied by f(b). If we can find
any value of u such that Gb(u) is below the constraint, then
bisect one way; else, if f(b) is above the constraint, bisect
the other. As a prerequisite for the algorithm, finite bounds
must be placed on b; let l be a sufficiently small integer such
that f(l) > c and let r be a sufficiently large integer such
that f(r) ≤ c:
Require: f(r) ≤ c < f(l)

while r − l > 1 do
b =

⌊
r + l

2

⌋
if f(b) > c then

l = b
else

r = b
end if

end while
If we let B represent the length of the domain of b then

the number of iterations for the algorithm to terminate is
bounded above by dlog2Be; however, this is the number of
f(b) function evaluations required. The number of G(b, u)
function evaluations required is therefore bounded above at:

dlog2Be (n(K, ε, L) + 1) (5)

where K def
= minKb, ε

def
= min εb, and L def

= maxLb.

III. STOCHASTIC METHOD

A. Model

Suppose now that for each fixed choice of b ∈ N, u ∈
I there is an underlying Markov process {ξn(b, u)} with
a function defined on the process g (ξn(b, u)). Now define
G(b, u), the function in the constrained optimization problem,
as follows:

ĜN (b, u) =
1

N

N∑
n=1

g (ξn(b, u)) (6)

G(b, u) = lim
N→∞

ĜN (b, u) (7)

As before, we will assume the following:
• For a fixed b that G(b, ·) ∈ C2

• Moreover, 0 < G′′b (u) ≤ 1
Kb

• For a fixed u that G(·, u) is monotonic decreasing.
• Sampling and evaluating g (ξn(b, u)) is allowed.
• For any choice of b ∈ N and u ∈ I , {ξn(b, u)} and g

satisfy conditions under which a central limit theorem
holds for ĜN (b, u); an exposition of such conditions can
be found in [3].

B. Golden Section

Once again, first we will produce a procedure to find
the minimum of G(b, u) for a fixed b (again called Gb(u);
for the remainder of the section the subscript b will be
dropped in contexts where b is fixed). The golden section
algorithm works by testing the statement “G(u1) < G(u2)”;

now that G can only be estimated, this test will have to be
modified. Under the assumption that a central limit theorem
for ĜN (b, u) applies for any b ∈ N and u ∈ I , we have that

√
N
(
ĜN (b, u)− G(b, u)

)
d−→ N(0, σ2

(b,u)) (8)

This allows for the construction of confidence intervals
to estimate G(u)), and this forms the basis of our approach.
In this context, additional parameters are needed: an initial
sample size n0, a significance level 1−α, and an indifference
level ε. For a chosen significance level, let c = Φ−1(1− α

2):

Require: a < u∗ < b
while b− a > δ do

u1 = a+ (b− a)(1− ϕ)
u2 = a+ (b− a)ϕ
Ĝn1

(u1) and Ĝn2
(u2) are constructed with at least n0

samples each; it may be the case that either n1 or n2 is
greater than n0 due to the golden section search reusing
points. Let S1 and S2 refer to the estimated variance at
u1 and u2, respectively:

while
∣∣∣Ĝn1

(u1)− Ĝn2
(u2)

∣∣∣ < c

(
S1√
n1

+
S2√
n2

)
do

if S1

√
(n2 + 1)n2

(√
n1 + 1−√n1

)
≥

S2

√
(n1 + 1)n1

(√
n2 + 1−√n2

)
then

Sample at u1, update n1, Ĝn1(u1), S1.
else

Sample at u2, update n2, Ĝn2
(u2), S2.

end if
if max

(
c
S1√
n1
, c

S2√
n2

)
< ε then

indifference level reached- break loop.
end if

end while
if indifference level reached then

either set a = u1 or b = u2
else if Ĝn1

(u1) < Ĝn2
(u2) then

b = u2
else

a = u1
end if

end while

Set up in this way, the choice of a = u1 or b = u2
is determined by means of confidence intervals estimating
G(u1) and G(u2). While the confidence intervals overlap
each other, sampling is done in such a way that the largest
confidence interval is shrunken. If both confidence intervals
are sufficiently small, then the means are sufficiently indistin-
guishable that either a = u1 or b = u2 is a viable choice; this
corresponds in the deterministic case with G(u1) = G(u2).
If the confidence intervals no longer overlap, then the choice
of a = u1 or b = u2 is made as in the deterministic case.
Lastly, in the constrained optimization problem the additional
escape condition to the loop is if a confidence interval is ever
found to lie entirely below the constraint.

C. Binary Search

Just as in the deterministic case the procedure
above enables the evaluation of the function
f(b) = minu∈I G(b, u). In this case the caveat is that
f(b) has a probability of being within some indifference
level of G(b, u). As in the deterministic case, a binary
search procedure can be employed on the domain of b by
first selecting a finite range of values to search over. The
algorithm itself requires no modification, but now the results
carry a probability of correct selection.

IV. ANALYSIS

A. Golden Section

The same argument as in the deterministic case can be
made with δ in order to bound the (now estimated) value
of G(u∗): thus n(Kb, εb, Lb) + 1 is the number of points
that are estimated by confidence intervals. In each case the
probability of the confidence interval containing the value it
is estimating is 1−α; so the lower bound on the probability
of correct selection is

(1− α)n(Kb,εb,Lb)+1 (9)

In the worst-case scenario, the true minimum is located
at one end of the interval I . In this situation, the following
recursive formula describes the bound on the error at stage
k + 1:

E[Ek+1] =

{
E[Ek] correct selection
E[Ek] + L(1− ϕ)ϕk incorrect selection

With the probability of correct selection at each stage
being 1 − α this means that the expected error can be
expressed recursively:

E [Ek+1] = (1− α)E [Ek] + α
(
E [Ek] + L(1− ϕ)ϕk

)
E [Ek+1] = E [Ek] + αL(1− ϕ)ϕk (10)

Solving the recurrence relation yields

E[Ek] = αL
(
1− ϕk

)
(11)

Hence, with the estimate from before the upper bound on
expected error is:

αL
(

1− ϕn(Kb,εb,Lb)+1
)

(12)

B. Binary Search

Recall that the structure of our algorithm is to operate
over fixed b, changing b only after determining if it is a
candidate solution or not. Suppose each determination carries
a probability of correct selection (1− βk) such as eqn. (9);
thus, if the domain of b is of finite size B then the same
logic from the deterministic case implies that the probability
of correct selection is bounded below by

∏dlog2 Be
k=1 (1−βk).

In the analysis of error in b the same idea from earlier can
be applied. Suppose the search domain of b has size B: at
iteration k of the binary search algorithm, we have:

E[Ek+1] =

E[Ek] correct selection

E[Ek] +
B

2k+1
incorrect selection

If we assume the probability of correct selection at any
iteration is (1 − β) then the expected error is described
recursively:

E[Ek+1] = (1− β)E[Ek] + β

(
E[Ek] +

B

2k+1

)
E[Ek+1] = E[Ek] +

βB

2k+1
(13)

Solving this recurrence relation yields

E[Ek] = Bβ

(
2k − 1

)
2k

(14)

In the worst-case, we already have that dlog2Be is the
highest number of iterations it would take; hence the upper
bound on expected error is:

Bβ

(
2dlog2 Be − 1

)
2dlog2 Be

(15)

V. EXPERIMENTAL RESULTS

The performance of a non-gradient method is compared
with one using gradients in a simplified problem setting.
More complex problems require specialized results justifying
the existence of gradient estimators; an example of this kind
of result can be found in [1]. Since b is a variable over
a discrete domain the comparison will be made between
methods for evaluating f(b) for a fixed value of b. The
simplified problem is thus one of finding a minimum over
a finite domain. Let X(u) be an exponentially distributed
random variable with mean u. This is the test function used:

G(u) = E
[
log (X(u) + 1) +

4

2X(u) + 1

]
(16)

The search interval will be [.1, 1]. The IPA derivative
estimator is given by exchanging derivative and expectation,
and employing a sample path derivative for X(u):

∂

∂u
G(u) = E

[
X(u)

u

(
1

X(u) + 1
− 8

(2X(u) + 1)2

)]
After 1000 simulation runs, the results are as follows:

Method CPU Samples PCS MSE
GS 41.265 3945.23 .7661 .6624
IPA 7.654 16017.2 .7113 .2967

VI. CONCLUSIONS

We are currently finishing simulation experiments for
comparison purposes and we expect to have fully completed
results in a months time.

In a more general multidimensional problem setting
gradient estimates can become very expensive to compute.
For problem settings where u is a multidimensional quantity
we propose that the golden search method can be extended
fruitfully by either a coordinate descent approach as
documented in [4] or, more generally, a randomized line
search.

The estimation of a function at separate locations may be
done asynchronously; that is, rather than test and determine
which location should be sampled next, both locations
are sampled in parallel. An asynchronous stochastic
coordinate descent algorithm using gradients has already
been documented in [5]; we propose a similar approach
would work here.

Another extension to the methods presented would be
implementing some degree of error detection and cor-
rection. For instance, a variation on the TCP additive-
increase/multiplicative-decrease control algorithm could be
adapted to the binary search procedure: when it becomes
clear that an erroneous selection has occurred during the
search, the algorithm increments or decrements its control
parameter additively until it is back on track.

REFERENCES

[1] F. Vázquez-Abad, “Ghost simulation model for discrete event
systems, an application to a local bus service,” in Proceedings
of the 2013 Winter Simulation Conference: Simulation: Making
Decisions in a Complex World, ser. WSC ’13. Piscataway,
NJ, USA: IEEE Press, 2013, pp. 655–666. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2675983.2676069

[2] J. Kiefer, “Sequential minimax search for a maximum,” Proc. Amer.
Math. Soc., vol. 4, pp. 502–506, 1953.

[3] G. L. Jones, “On the markov chain central limit theorem,”
Probab. Surveys, vol. 1, pp. 299–320, 2004. [Online]. Available:
http://dx.doi.org/10.1214/154957804100000051

[4] S. J. Wright, “Coordinate descent algorithms,” Mathematical
Programming, vol. 151, no. 1, pp. 3–34, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10107-015-0892-3

[5] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asynchronous
parallel stochastic coordinate descent algorithm,” Journal of Machine
Learning Research, vol. 16, pp. 285–322, 2015. [Online]. Available:
http://jmlr.org/papers/v16/liu15a.html

