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1 Infinite Vector Product & Direct Sum Isomorphism

1.1 The Isomorphism

Let’s continue where we left off. We wish to show that
˜

à

iPΛ

Vi

¸˚

–
ź

iPΛ

V ˚i

The most ready way to do that is to find a map between the two spaces and show it is an
isomorphism. What follows is a walkthrough of the deduction of the isomorphism. We will
try to find the mapping from the right space to the left space. That is, let’s start with a
generic map ϕ :

ź

V ˚i Ñ
`
à

Vi
˘˚

. What do we know about these spaces?

By definition,
`
à

Vi
˘˚

is Hom

˜˜

à

iPΛ

Vi

¸

, K

¸

where K is the underlying scalar field

for these vector spaces. Similarly, we know that
ź

V ˚i is by the bijective function corre-

spondence the set of all functions

#

f : Λ Ñ
8
ď

iPΛ

V ˚i

+

; remember that V ˚i is itself the set of

all functions in Hom pVi, Kq. For clarity, from this point on we will adopt the following
convention: elements of the direct sum will be f, g, h... and elements of the product will be
F,G,H... The domain of ϕ contains elements that are functions of functions; so our map
must be ϕpF qpfq where fpiq P Vi is almost everywhere zero.

Let me attempt to be more clear as to what F and f represent. f is a function such
that fpiq P Vi for every index i and f is almost everywhere zero. Similarly F piq P V ˚i is a
function such that at every index i, F piq is an element of the dual- or, since the dual is the
set of all linear transformations of Vi, for any index i the function F piq evaluates to a linear
transformation of Vi. In other words, F piq pfpiqq P K, the underlying field (since F piq is a
linear transformation of Vi to K, and fpiq is some element of Vi).
Because of this, with a little creativity we conjecture that the isomorphism map we want is

ϕpF qpfq “
ÿ

iPΛ

F piq pfpiqq

Remember that ϕpF qpfq is broken down as the function given by ϕpF q applied to the function
f . The isomorphism arises because ϕ takes F to ϕpF q; F piq is a function in Hom pVi, Kq
and ϕpF q is a function in Hom

`à

Vi, K
˘

.
Working with this conjecture, we need to show three facts to prove that ϕ is an isomorphism:

• ϕ is well-defined: that is, two different inputs should always give us two different out-
puts.

• ϕ is a homomorphism.
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• ϕ is bijective.

To show ϕ is well-defined we must show that ϕpF q is a member of the set Hom

˜

à

iPΛ

Vi

¸˚

.

That way, ϕpF q will unambiguously be what we want it to be. To show this fact we merely
need to show ϕpF q is a homomorphism from

à

iPΛ

Vi to K, since that is the definition of the

set Hom

˜

à

iPΛ

Vi

¸˚

Claim: ϕpF q is a homomorphism:

Proof.

ϕpF qpf ` gq “
ÿ

iPΛ

F piqpf ` gqpiq

“ F piqpfpiq ` gpiqq

F piq P V ˚i ; f, g P Vi

“
ÿ

iPΛ

F piqfpiq ` F piqgpiq

“
ÿ

iPΛ

F piqfpiq `
ÿ

iPΛ

F piqgpiq

“ ϕpF qpfq ` ϕpF qpgq

Homework is to show the scalar case for ϕpF q.
Next, we need to show ϕ is also a homomorphism:
Claim: ϕ is a homomorphism:

Proof.

ϕpαF qpfq “
ÿ

iPΛ

pαF qpiqpfpiqq

“
ÿ

iPΛ

αF piqpfpiqq

“ α
ÿ

iPΛ

F piqpfpiqq

“ αϕpF qpfq

Homework is to show the addition case for ϕ.
Finally, we have to show ϕ is bijective. The way we will do this is show ϕ is a surjective and
injective map.
Claim: ϕ is bijective:
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Proof. Surjective case: Let F P p
À

Viq
˚. Thus for any i, Fpfpiqq P K; @i, vi P Vi, Df P

à

iPΛ

Vi

given by fpiq “ vi. Hence Fpfpiqq P K is defined. Thus every element in the codomain is in
the image (this is necessary, else we may have some elements F that are not in the target of
the isomorphism!).

Now: @j : ρj
`à

Vi
˘˚
“ V ˚j ùñ ρjpFq P V ˚j . This tells us what the preimage of pF q should

be: define F P
ź

iPΛ

V ˚i to be so F pjq “ ρjpFq. Thus for any F P p
À

Viq
˚ we claim ϕpF q “ F .

Claim: ϕpF q “ F

Proof.

ϕpF qpfq “
ÿ

iPΛ

F pjqfpjq

“
ÿ

iPΛ

ρjpFqfpjq

“ Fpfq

Hence ϕpF qpfq “ Fpfq, and so ϕ is surjective.

For homework, show the injective case (it’s easier than the surjective case).

2 More About Duals

2.1 Double Duals

Immediate results from our work so far: the dual space is “bigger” than the space: in the
finite case |V | “ |V ˚| and in the infinite case |V ˚| ą |V | (just think about our existing
isomorphisms). Consider also the dual-dual, V ˚˚ “ Hom pV ˚, Kq; for x P V, f P V ˚ define
X˚˚ P V ˚˚ by X˚˚pfq “ fpxq; the map x Ñ X˚˚ using X˚˚pfq “ fpxq is an isomorphism.
Thus V ˚˚ and V are very closely related, much more than V ˚ and V . Sometimes these are
referred to as “double dual” spaces.

2.2 Physical Examples

Dual spaces come up in particle physics. The classic example: a Hilbert space (such as
Rn but for things like special relativity the space may be more exotic) is the space that
contains particles, and the dual space to a given particle is what contains all the interactions
(the self-adjoint operators) between the given particle and all the other particles in the
space. Specifically, consider the photoelectric effect: electrons are the elements of the original
Hilbert space, photons are what constitute the dual space. The double dual space will be
the electron interactions that occur as a result of the photon interactions. In physical terms:
photons act on electrons by raising their energy levels; electrons act on photons back via
other mechanisms such as emission.
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3 Symmetric Bilinear Forms

3.1 Definition

If V is a vector space we can define a symmetric bilinear form σ:

σ : V ˆ V Ñ K

σpu, vq “ σpv, uq

σpu` w, vq “ σpu, vq ` σpw, vq

σpαu, vq “ ασpu, vq

For any vector v P V we can define the function fvpwq “ σpv, wq as a symmetric bilinear
form: thus, since fv P V

˚, the dual space gives rise to the context we need to talk about
symmetric bilinear forms. If we think of the mapping ϕ : v Ñ fv then the kernel of this
mapping is precisely the set tv P V : σpv, wq “ 0@w P V u. This is the same as saying v P V K

(a symmetric bilinear form gives rise to the concept of orthogonality between vectors). Be
aware that this condition seems strange to us for a reason: that is because our intuition
will lead us to believe that nothing can be perpendicular (or equivalently, orthogonal) to
everything. However, this is a condition that is not necessarily true in an arbitrary vector
space: it is something we need to be explicit about.

3.1.1 An Example

If we take σpv, wq “

ż b

a

Dv Dw dx where D is the differentiation operator and v, w P C1ra, bs.

If v “ 0 the zero function then σpv, wq “ 0 for all w. This is an example of something that
can be orthogonal to everything in a space.

3.1.2 The Reisz Representation Theorem

This is what occurs with “nongeneracy”: a degenerate form σ is one whose kernel is
nonempty, one whose subsequent definition of orthogonality gives rise to elements that are
orthogonal to everything. One way of avoiding this is to guarantee that the form is “positive
definite”: σpv, wq ą 0@v ‰ θ. This turns the symmetric bilinear form into an inner product-
what we call a positive definite inner product. As a final note, inner products of this nature
give rise to a certain isomorphism theorem: the Riesz Representation Theorem.

Theorem 1. (Riesz): In a Hilbert space H, for any function f P HompH,Rq there exists a
unique vector v P H such that fpwq “ fvpwq “ σpw, vq
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